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PREFACE

This book is based upon my unpublished Cornell dissertation, Equal
1932. As the title indicates, the emphasis in the dissertation was upon
individual writers. In the present work the emphasis is on the theories rather
than on their promulgators. Since a great many tuning systems are
discussed, a separate chapter is devoted to each of the principal varieties of
tuning, with subsidiary divisions wherever necessary. Even so, the whole
subject is so complex that it seemed best that these chapters be preceded by
a running account (with a minimum of mathematics) of the entire history of
tuning and temperament. Chapter | also contains the principal account of
the Pythagorean timing, for it is unnecessary to spend a chapter upon a
tuning system that exists in one form only.

Most technical terms will be defined when they first occur, as well as in
the Glossary, but a few of these terms should be defined immediately. Of
small intervals arising from tuning, the comma 1s the most familiar. The
ordinary (syntonic or Ptolemaic) comma is the interval between a just major
third, with ratio 5:4, and a Pythagorean ditone or major third, with ratio
81:64. The ratio of the comma (the ratio of an interval is obtained by
dividing the ratio of the higher pitch by that of the lower) is 81:80.

The Pythagorean (ditonic) comma is the interval between six tones, with
ratio 531441:262144, and the pure octave, with ratio 2:1. Thus its ratio is
531441:524288, which is approximately 74:73. The ditonic comma is about
12/11 as large as the syntonic comma. In general, when the word comma is
used without qualification, the syntonic comma is meant.

There is necessarily some elasticity in the manner in which the different
tuning systems are presented in the following chapters. Sometimes a writer
has described the construction of a monochord, a note at a time. That can be
set down easily in the form of ratios. More often he has expressed his
monochord as a series of string-lengths, with a convenient length for the
fundamental. (Except in the immediate past, the use of vibration numbers,
inversely proportional to the string-lengths, has been so rare that it can be



ignored.) Or he may speak of there being so many pure fifths, and other
fifths flattened by a fractional part of the comma. Such systems could be
transformed into equivalent string-lengths, but this has not been done in this
book when the original writer had not done so.

Systems with intervals altered by parts of a comma can be shown
without difficulty in terms of Ellis’ logarithmic unit called the cent, the
hundredth part of an equally tempered semitone, or 1/1200 part of an

octave.* Since the ratio of the octave is 2:1, the cent is 21/1200_ As a matter
of fact, such eighteenth century writers on temperament as Neidhardt and
Marpurg had a tuning unit very similar to the cent: the twelfth part of the
ditonic comma, which they used, is 2 cents, thus making the octave contain
600 parts instead of 1200.

The systems originally expressed in string-lengths or ratios may be
translated into cents also, although with greater difficulty. They have been
so expressed in the tables of this book, in the belief that the cents
representation is the most convenient way of affording comparisons
between systems. In systems where it was thought they would help to
clarify the picture, exponents have been attached to the names of the notes.
With this method, devised by Eitz, all notes joined by pure fifths have the
same exponent. Since the fundamental has a zero exponent, all the notes of
the Pythagorean tuning have zero exponents. The exponent -1 is attached to
notes a comma lower than those with zero exponents, i.e., to those forming
pure thirds above those in the zero series. Thus in just intonation the notes

forming a major third would be C%-E-!, etc. Similarly, notes that are pure
thirds lower than notes already in the system have exponents which are
greater by one than those of the higher notes. This use of exponents is
especially advantageous in comparing various systems of just intonation
(see Chapter V). It may be used also, with fractional exponents, for the
different varieties of the meantone temperament. If the fifth C-G, for

example, is tempered by 1/4 comma, these notes would be labeled C° and
G_1/4.

A device related to the use of integral exponents for the notes in just
intonation is the arrangement of such notes to show their harmonic
relationships. Here, all notes that are related by fifths, i.e., that have the
same exponent, lie on the same horizontal line, while their pure major thirds
lie in a parallel line above them, each forming a 45° angle with the related
note below. Since the pure minor thirds below the original notes are lower



by a fifth than the major thirds above them, they will lie in the same higher
line, but will form 135° angles with the original notes. For example:

AT OE™ 0BT,

G

This arrangement is especially good for showing extensions of just
intonation with more than twelve notes in the octave, and it is used for that
purpose only in this book (see Chapter VI).

It is desirable to have some method of evaluating the various tuning
systems. Since equal temperament is the ideal system of twelve notes if
modulations are to be made freely to every key, the semitone of equal
temperament, 100 cents, is taken as the ideal, from which the deviation of

each semitone, as C-C*, C*-D, D-EP, etc., is calculated in cents. These
deviations are then added and the sum divided by twelve to find the mean
deviation (M.D.) in cents. The standard deviation (S.D.) is found in the
usual manner, by taking the root-mean-square.

It should be added that there may be criteria for excellence in a tuning
system other than its closeness to equal temperament. For example, if no

notes beyond EP or G* are used in the music to be performed and if the
greatest consonance is desired for the notes that are used, then probably the
1/5 comma variety of mean - tone temperament would be the ideal, since its
fifths and thirds are altered equally, the fifths being 1/5 comma flat and its
thirds 1/5 comma sharp. If keys beyond two flats or three sharps are to be
touched upon occasionally, but if it is considered desirable to have the

greatest consonance in the key of C and the least in the key of GP, then our
Temperament by Regularly Varied Fifths would be the best. This is a matter
that is discussed in detail at the end of Chapter VII, but it should be
mentioned now.

My interest in temperament dates from the time in Berlin when
Professor Curt Sachs showed me his copy of Mersenne’s Harmonie
universelle. I am indebted to Professor Otto Kinkeldey, my major professor
at Cornell, and to the Misses Barbara Duncan and Elizabeth Schmitter of
the Sibley Musical Library of the Eastman School of Music, for assistance
rendered during my work on the dissertation. Most of my more recent
research has been at the Library of Congress. Dr. Harold Spivacke and Mr.
Edward N. Waters of the Music Division there deserve especial thanks for



encouraging me to write this book. I want also to thank the following men
for performing so well the task of reading the manuscript: Professor Charles
Warren Fox, Eastman School of Music; Professor Bonnie M. Stewart,
Michigan State College; Dr. Arnold Small, San Diego Navy Electronics
Laboratory; and Professor Glen Haydon, University of North Carolina.

J. Murray Barbour

November, 1950

PREFACE TO SECOND EDITION

It is gratifying that the sales of this book have warranted a second
edition. In it several minor errors have been rectified. But th¢ major
changes are in the Index. There the serious errors in pagination have been
corrected, and, following a suggestion made by Professor David D. Boyden,
University of California, most of the cross references have been replaced by
direct page references. These changes should increase the value of Tuning
and Temperament as a reference work.

J. M. B.

East Lansing, Michigan
September, 1952
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GLOSSARY

Arithmetical Division — The equal division of the difference between two

quantities, so that the resultant forms an arithmetical progression, as
9:8:7:6.

Bonded Clavichord — A clavichord upon which two or more consecutive
semitones were produced upon a single string.

Cent — The unit of interval, measure. The hundredth part of an equal
semitone, with ratio!?%0 Jf&

Circle of Fifths — The arrangement of the notes of a closed system by
fifths, as C, G, D, A, E, etc.

Circulating Temperaments — Temperaments in which all keys are playable,
but in which keys with few sharps or flats are favored.

Closed System — A regular temperament in which the initial note is
eventually reached again.

Column of Differences — See Tabular Differences.

Comma — A tuning error, such as the interval B*-C in the Pythagorean
tuning. See Ditonic Comma and Syntonic Comma.

Diesis — The interval (roughly 1/5 tone) between two enharmonically
equivalent notes, as Ab and G#, in just intonation or meantone
temperament. Its ratio is 128:125 or about 41 cents.

Ditone — A major third, especially one formed by two equal tones, as in
the Pythagorean tuning (81:64).

Ditonic Comma — The interval between two enharmonically equivalent

notes, as B and C, in the Pythagorean tuning. Its ratio is 531441:524288
or approximately 74:73, and it is conventionally taken as 24 cents.



Duplication of the Cube — A problem of antiquity, equivalent to finding
two geometrical means between two quantities one of which is twice as
large as the other, or to finding the cube root of 2.

Exponents — In tuning theory integral and fractional exponents are used to
indicate deviations from the Pythagorean tuning, the unit being the
syntonic comma.

Equal Temperament — The division of the octave into an equal number of
parts, specifically into 12 semitones, each of which has the ratio of !2

Euclidean Construction — Euclid’s method for finding a mean proportional
between two lines, by describing a semicircle upon the sum of the lines
taken as a diameter and then erecting a perpendicular at the juncture of
the two lines.

Fretted Clavichord — See Bonded Clavichord.

Fretted Instruments — Such modern instruments as the guitar and banjo, or
the earlier lute and viol.

Generalized Keyboard — A keyboard arranged conveniently for the
performance of multiple divisions.

Geometrical Division — The proportional division of two quantities, so that
the resultant forms a geometrical progression, as 27:18:12:8.

Golden System — A system of tuning based on the ratio of the golden
section ( ..J?- 1):2.
Good Temperaments — See Circulating Temperaments.

Irregular System — Any tuning system with more than one oddsized fifth,
with the exception of just intonation.

Just —Pure: A term applied to intervals, as the just major third.

Just Intonation — A system of tuning based on the octave (2:1), the pure
fifth (3:2), and the pure major third (5:4).

Linear Correction — The arithmetical division of the error in a string-
length.




Mean-Semitone Temperament — A temperament in which the diatonic
notes are in meantone temperament, and the chromatic notes are taken as
halves of meantones.

Meantone Temperament — Strictly, a system of tuning with flattened fifths
(¥/5:1) and pure major thirds (5:4). See Varieties of Meantone
Temperament.

Meride — Sauveur’s tuning unit, 1/43 octave, that is, 4¥"2. Each meride
was divisible into 7 eptamerides, and each of the eptamerides into 10
decamerides.

Mesolabium — An instrument of the ancients for finding mechanically 2
mean proportionals between 2 given lines. See illustration, p. 51.

Monochord — A string stretched over a wooden base upon which are
indicated the string-lengths for some tuning system; a diagram containing
these lengths; directions for constructing such a diagram.

Monopipe — A variable open pipe, with indicated lengths for a scale in a
particular tuning system, thus fulfilling a function similar to that of a
monochord.

Multiple Division — The division of the octave into more than 12 parts,
equal or unequal.

Negative System — A regular system whose fifth has a ratio smaller than
3:2.

Positive System — A regular system whose fifth has a ratio larger than 3:2.
Ptolemaic Comma — See Syntonic Comma.
Pythagorean Comma — See Ditonic Comma.

Pythagorean Tuning — A system of tuning based on the octave (2:1) and
the pure fifth (3:2).

Regular Temperament — A temperament in which all the fifths save one
are of the same size, such as the Pythagorean tuning or the meantone
temperament. (Equal temperament, with all fifths equal, 1s also a regular
temperament, and so are the closed systems of multiple division.)



Schisma — The difference between the syntonic and ditonic commas, with
ratio 32805:32768, or approximately 2 cents.

Semi-Meantone Temperament — See Mean-Semitone Temperament.

Sesqui- — The prefix used to designate a superparticular ratio, as
sesquitertia (4:3).

Sexagesimal Notation — The use of 60 rather than 10 as a base of
numeration, as in the measurement of angles.

Split Keys — Separate keys on a keyboard instrument for such a pair of
notes as G* and AP.

String-Length — The portion of a string on the monochord that will
produce a desired pitch.

Subsemitonia — See Split Keys.

Superparticular Ratio — A ratio in which the antecedent exceeds the
consequent by 1, as 5:4. See Sesqui-.

Syntonic Comma — The interval between a just major third (5:4) and a
Pythagorean third (81:64). Its ratio is 81:80 and it is conventionally taken
as 22 cents.

Tabular Differences — The differences between the successive terms in a
sequence of numbers, such as a geometrical progression.

Temper - To vary the pitch slightly. A tempered fifth is specifically a
flattened fifth.

Temperament — A system, some or all of whose intervals cannot be
expressed in rational numbers.

A Tuning — A system all of whose intervals can be expressed in rational
numbers.

Tuning Pipe — See Monopipe.

Unequal Temperament — Any temperament other than equal temperament,
particularly the meantone temperament or some variety thereof.

Varieties of Meantone Temperament — Regular temperaments formed on
the same principle as the meantone temperament, with flattened fifths




and (usually) sharp thirds.

Wolf Fifth — The dissonant fifth, usually G*-EP (notated as a diminished
sixth), in any unequal temperament, such as the meantone wolf fifth of
737 cents.

OceanofPDF.com



https://oceanofpdf.com/

CONTENTS

Preface

Glossary
. History of Tuning and Temperament
Greek Tunings

Meantone Temperament
Other Varieties of Meantone Temperament

Equal Temperament
Geometrical and Mechanical Approximations
Numerical Approximations

Just Intonation
Theory of Just Intonation

. Multiple Division
Equal Divisions
Theory of Multiple Division

. Irregular Systems
Modifications of Regular Temperaments
Temperaments Largely Pythagorean
Divisions of Ditonic Comma
Metius’ System
“Good” Temperaments

. From Theory to Practice
Tuning of Keyboard Instruments
Just Intonation in Choral Music



Present Practice
Literature Cited

Index

Intervals with Superparticular Ratios

OceanofPDF.com


https://oceanofpdf.com/

LIST OF ILLUSTRATIONS

Frontispiece: Fludd’s Monochord, with Pythagorean Tuning and Associated
Symbolism

A. Schneegass’ Division of the Monochord
B. The Mesolabium
C. Roberval’s Method for Finding Two Geometric Mean Proportionals

D. Nicomedes’ Method for Finding Two Geometric Mean
Proportionals

E. Strihle’s Geometrical Approximation for Equal Temperament
F. Gibelius’ Tuning Pipe

G. Mersenne’s Keyboard with Thirty-One Notes in the Octave
H. Ganassi’s Method for Placing Frets on the Lute and Viol

I. Bermudo’s Method for Placing Frets on the Vihuela

OceanofPDF.com


https://oceanofpdf.com/

Chapter I. HISTORY OF TUNING AND
TEMPERAMENT

The tuning of musical instruments is as ancient as the musical scale. In fact,
it 1s much older than the scale as we ordinarily understand it. If primitive
man played upon an equally primitive instrument only two different pitches,
these would represent an interval of some sort — a major, minor, or neutral
third; some variety of fourth or fifth; a pure or impure octave. Perhaps his
concern was not with interval as such, but with the spacing of soundholes
on a flute or oboe, the varied lengths of the strings on a lyre or harp.
Sufficient studies have been made of extant specimens of the wind
instruments of the ancients, and of all types of instruments used by
primitive peoples of today, for scholars to come forward with interesting
hypotheses regarding scale systems anterior to our own. So far there has
been no general agreement as to whether primitive man arrived at an
instrumental scale by following one or another principle, several principles
simultaneously, or no principle at all. Since this is the case, there is little to
be gained by starting our study prior to the time of Pythagoras, whose
system of tuning has had so profound an influence upon both the ancient
and the modern world.

The Pythagorean system is based upon the octave and the fifth, the first
two intervals of the harmonic series. Using the ratios of 2:1 for the octave
and 3:2 for the fifth, it is possible to tune all the notes of the diatonic scale
in a succession of fifths and octaves, or, for that matter, all the notes of the
chromatic scale. Thus a simple, but rigid, mathematical principle underlies
the Pythagorean tuning. As we shall see in the more detailed account of
Greek tunings, the Pythagorean tuning per se was used only for the diatonic
genus, and was modified in the chromatic and enharmonic genera. In this
tuning the major thirds are a ditonic comma (about 1/9 tone) sharper than
the pure thirds of the harmonic series. When the Pythagorean tuning is

extended to more than twelve notes in the octave, a sharped note, as G*, is
higher than the synonymous flatted note, as Ab.



The next great figure in tuning history was Aristoxenus, whose dispute
with the disciples of Pythagoras raised a question that is eternally new: are
the cogitations of theorists as important as the observations of musicians
themselves? His specific contention was that the judgment of the ear with
regard to intervals was superior to mathematical ratios. And so we find him
talking about “parts” of an octave rather than about string-lengths. One of
Aristoxenus’ scales was composed of equal tones and equal halves of tones.
Therefore Aristoxenus was hailed by sixteenth century theorists as the
inventor of equal temperament. However, he may have intended this for the
Pythagorean tuning, for most of the other scales he has expressed in this
unusual way correspond closely to the tunings of his contemporaries. From
this we gather that his protest was not against current practice, but rather
against the rigidity of the mathematical theories.

Claudius Ptolemy, the geographer, is the third great figure in early
tuning history. To him we are in debt for an excellent principle in tuning
lore: that tuning is best for which ear and ratio are in agreement. He has
made the assumption here that it is possible to reach an agreement. The
many bitter arguments between the mathematicians and the plain musicians,
even to our own day, are evidence that this agreement is not easily obtained,
but may actually be the result of compromise on both sides. To Ptolemy the
matter was much simpler. For him a tuning was correct if it used
superparticular ratios, such as 5:4, 11:10, etc. All of the tuning varieties
which he advocated himself are constructed exclusively with such ratios. To
us, nearly 2000 years later, his tunings seem as arbitrary as was that of
Pythagoras.

Ptolemy’s syntonic diatonic has especial importance to the modern
world because it coincides with just intonation, a tuning system founded on
the first five intervals of the harmonic series — octave, fifth, fourth, major
third, minor third. Didymus’ diatonic used the same intervals, but in slightly
different order. If it could be shown that Ptolemy favored his syntonic
tuning above any of the others which he has presented, the adherents of just
intonation from the sixteenth century to the twentieth century would be on
more solid ground in hailing him as their patron saint. Actually he approved
the syntonic tuning because its ratios are superparticular; but so are the
ratios of three of the four other diatonic scales he has given.

Just intonation, in either the Ptolemy or the Didymus version, was
unknown throughout the Middle Ages. Boethius discussed all three of the



above-mentioned authorities on tuning, but gave in mathematical detail
only the system of Pythagoras. It was satisfactory for the unisonal
Gregorian chant, for its small semitones are excellent for melody and its
sharp major thirds are no drawback. Even when the first crude attempt at
harmony resulted in the parallel fourths and fifths of organum, the
Pythagorean tuning easily held its own.

But, later, thirds and sixths were freely used and were considered
imperfect consonances rather than dissonances. It has been questioned
whether these thirds and sixths were as rough as they would have been in
the strict Pythagorean tuning, or whether a process of softening (tempering)
had not already begun. At least one man, the Englishman Walter Odington,
had stated that consonant thirds had ratios of 5:4 and 6:5, and that singers
intuitively used these ratios instead of those given by the Pythagorean
monochord. In reply one might note that some theorists continued to
advocate the Pythagorean tuning for centuries after the common practice
had become something quite different. If it was good enough for them,
surrounded as they were by other, less harsh, tuning methods, it must have
sufficed for most of those who lived in an age when no other definite
system of tuning was known.

The later history of the Pythagorean tuning makes interesting reading. !
It was still strongly advocated in the early sixteenth century by such men as
Gafurius and Ornithoparchus, and formed the basis for the excellent
modification made by Grammateus and Bermudo. At the end of the century
Papius spoke in its favor, and so, forty years later, did Robert Fludd. In the
second half of the seventeenth century Bishop Caramuel, who has the
invention of “musical logarithms” to his credit, said that “very many”
(plurimi) of his contemporaries still followed in the footsteps of Pythagoras.
Like testimony was given half a century later from England, where
Malcolm wrote that “some and even the Generality ... tune not only their
Octaves, but also their Sths as perfectly... Concordant as their Ear can judge,
and consequently make their 4ths perfect, which indeed makes a great many
Errors in the other Intervals of 3rd and 6th.” After another half century we
find Abbé Roussier extolling “triple progression,” as he called the
Pythagorean tuning, and praising the Chinese for continuing to tune by
perfect fifths.

Like the systems of Agricola in the sixteenth century and of Dowland in
the early seventeenth century, many of the numerous irregular systems of



the eighteenth century contained more pure than impure fifths. The
instruments of the violin family, tuned by fifths, have a strong tendency
toward the Pythagorean tuning. And a succession of roots moving by fifths
is the basis of our classic system of harmony from Rameau to Prout and
Goetschius. Truly the Pythagorean tuning system has been long-lived, and
is still hale and hearty!

To return to the fifteenth century and the dissatisfied performers:
Almost certainly some men did dislike the too-sharp major thirds and the
too-flat minor thirds so much that they attempted to improve them. But
history has preserved no record of their experiments. And the vast majority
must have still been using the Pythagorean system, with all its
imperfections, when Ramis de Pareja presented his tuning system to the
world.

To be sure, Ramis did not present himself as the champion of a
tremendous innovation. He was not a Luther nailing his ninety-five theses
to the church door. His tuning was offered as a method which would be
easier to work out on the monochord, and thus would be of greater
utilitarian value to the singer, than was the Pythagorean tuning, with its
cumbersome ratios. Although Ramis’ monochord contained four pure
thirds, with ratio 5:4, it was not the usual form of just intonation applied to
the chromatic octave, in which eight thirds will be pure. It is rather to be
considered an irregular tuning, combining features of both the Pythagorean
tuning and just intonation. Some of Ramis’ contemporaries assailed his
tuning method, but his pupil Spataro explained it as a sort of temperament
of the Pythagorean tuning. From these polemics arose the entirely false

notion that Ramis was an advocate of equal temperament.? But he is worthy
of our respect as the first of a long line of innovators and reformers in the
field of tuning.

As the words “tuning” and “temperament” are used today, the former is
applied to such systems as the Pythagorean and just, in which all intervals
may be expressed as the ratio of two integers. Thus for any tuning it is
possible to obtain a monochord in which every string-length is an integer. A
temperament is a modification of a tuning, and needs radical numbers to
express the ratios of some or all of its intervals. Therefore, in monochords
for temperaments the numbers given for certain (or all) string-lengths are
only approximations, carried out to a particular degree of accuracy. Actually
it is difficult in extreme cases to distinguish between tunings and



temperaments. For example, Bermudo constructed a monochord in which

the tritone G-C* has the ratio 164025:115921. This differs by only 1/7 per
cent from the tritone of equal temperament, and in practice could not have
been differentiated from it. But his system, which consists solely of linear
divisions, should be called a tuning rather than a temperament.

It is not definitely known when the practice of temperament first arose
in connection with instruments of fixed pitch, such as organs and claviers.
Even in tuning an organ by Pythagorean fifths and octaves, the result would
not be wholly accurate if the timer’s method was to obtain unisons between
pitches on a monochord and the organ pipes. This would be a sort of
unconscious temperament. More consciously he may have tried to improve
some of the harsh Pythagorean thirds by lopping a bit off one note or
another. Undoubtedly this was being done during the fifteenth century, for
we find Gafurius, at the end of that century, mentioning that organists assert

that fifths undergo a small diminution called temperament (participata).’

We have no way of knowing what temperament was like in Gafurius’
age; but it 1s my belief that this diminution which Gafurius characterized as
“minimae ac latentis incertacque quodemmodo quantitatis” was actually so
small that organs so tuned came closer to being in equal temperament than
in just intonation or the mean-tone temperament. This belief is substantiated
by two German methods of organ temperament which appeared in print a
score of years later than Gafurius’ tome. The earlier of the two was Arnold
Schlick’s temperament, an irregular method for which his directions were
somewhat vague, but in which there were ten flattened and two raised
fifths, as well as twelve raised thirds. Shohé Tanaka’s description of

Schlick’s method* as the mean-tone temperament is wholly false; for in the
latter the eight usable thirds are pure. Actually, from Schlick’s own account,
the method lay somewhere between the mean-tone temperament and the
equal temperament. More definite and certainly very near to equal
temperament was Grammateus’ method, in which the white keys were in
the Pythagorean tuning and the black keys were precisely halfway between
the pairs of adjoining white keys.

Just what the players themselves at this time understood by equal
semitones is not known. Perhaps they would have been satisfied with a
tuning like that of Grammateus, with ten semitones equal and the other two
smaller. The first precise mathematical definition of equal temperament was
given by Salinas: “We judge this one thing must be observed by makers of



viols, so that the placing of the frets may be made regular, namely that the
octave must be divided into twelve parts equally proportional, which twelve

will be the equal semitones.” To facilitate constructing this temperament
on the monochord, Salinas advised the use of the mesolabium, a mechanical
method for finding two mean proportionals between two given lines.
Zarlino also gave mechanical and geometric methods for finding the mean
proportionals, intended primarily for the lute. (Zarlino did include, however,
Ruscelli’s enthusiastic plea that all instruments, even organs, should be
tuned equally.) The history of equal temperament, then, is chiefly the
history of its adoption upon keyboard instruments.

Neither Salinas nor Zarlino gave monochord lengths for equal
temperament, although the problem was not extremely difficult: to obtain
the 12th root of 2, take the square root twice and then the cube root. The
first known appearance in print of the correct figures for equal temperament
was in China, where Prince Tsaiyli’s brilliant solution remains an enigma,
since the music of China had no need for any sort of temperament. More
significant for European music, but buried in manuscript for nearly three
centuries, was Stevin’s solution. As important as this achievement was his
contention that equal temperament was the only logical system for tuning
instruments, including keyboard instruments. His contemporaries
apologetically presented the equal system as a practical necessity, but
Stevin held that its ratios, irrational though they may be, were “true” and
that the simple, rational values such as 3:2 for the fifth were the
approximations! In his day only a mathematician (and perhaps only a
mathematician not fully cognizant of contemporary musical practice) could
have made such a statement. It is refreshingly modern, agreeing completely
with the views of Schonberg and other advanced theorists and composers of
our day.

The most complete and important discussion of tuning and temperament
occurs in the works of Mersenne. There, in addition to his valuable
contributions to acoustics and his descriptions of instruments, Mersenne ran
the whole gamut of tuning theory. He expressed equal temperament in
numbers, indicated geometrical and mechanical solutions for it, and finally
put it upon the practical basis of tuning by beats as used today. Fully as
catholic is his list of instrumental groups for which this temperament should
be used: all fretted instruments, all wind instruments, all keyboard

instruments, and even percussion instruments (bells).® The widespread



influence of Mersenne’s greatest work, Harmonie universelle (Paris, 1636 —
37), undoubtedly helped greatly to popularize a timing that was then still
considered as suitable for lutes and viols only.

The first really practical approximation for equal temperament had been
presented by Vincenzo Galilei half a century before Mersenne. He showed
that the ratio of 18:17 was convenient in fretting the lute. Since references
to this size of semitone cover two and a half centuries, it is probable that it
has been used even longer by makers of lutes, guitars, and the like. Of
course the repeated use of the 18:17 ratio would not give an absolutely pure
octave, but a slight adjustment in the intervals would correct the error.
Galilei’s explanation of the reason for equal semitones on the lute is logical
and correct: Since the frets are placed straight across the six strings, the
order of diatonic and chromatic semitones is the same on all strings. Hence,

in playing chords, C* might be sounded on one string and DP on another,
and this will be a very false octave unless the instrument is in equal
temperament.

Vicentino had referred to a serious difficulty that arose from the
common practice of having one kind of tuning (mean-tone) for keyboard
instruments and another (equal) for fretted instruments. Since the pitches
were so divergent, there was dissonance whenever the two groups were
used together. By 1600, theorists like Artusi and Bottrigari said that these
different groups of instruments were not used simultaneously because of the
pitch difficulties. That is why such large instrumental groups were needed
as those employed in the Ballet Comique de la Reine or in Monteverdi’s
Orfeo — selected groups of like instruments sounded well, but the mixture of
different tunings made tuttis impracticable. It would seem that this
consideration would have brought about the universal adoption of equal
temperament long before it did come. However, after the unfretted violins
became the backbone of the seventeenth century orchestra, their flexibility
of intonation made this problem less pressing than when lutes and viols had
been opposed to organs and claviers.

Before we leave the sixteenth century, we should examine the
contribution to tuning history for which Vicentino is especially known. His
archicembalo was an instrument with six keyboards, with a total of thirty-
one different pitches in the octave. He described its tuning as that of the
“usage and tuning common to all the keyboard instruments, as organs,

cembali, clavichords, and the like.”” This would have been the ordinary




mean-tone temperament, in which the fifths were tempered by 1/4 comma.
Huyghens, a century and a half after Vicentino, showed that there was very
close correspondence between a system in which the octave is divided into
thirty-one logarithmically equal parts and the mean-tone system, similarly
extended to thirty-one parts.

A simpler type of multiple division was the cembalo with nineteen notes
in the octave. Both Zarlino and Salinas intended their variants of the mean-
tone temperament (with fifths tempered by 2/7 and by 1/3 comma
respectively) for such an instrument, and the latter’s temperament would
result in an almost precisely equal division. Praetorius described such an
instrument also, and it has received favor with some twentieth century
writers, especially Yasser.

The best system of multiple division within the limits of practicability
divides the octave into fifty-three parts. This is literally a scale of commas,
and, as such, was suggested by the ancient Greek writers on the
Pythagorean system. Mersenne and Kircher in the seventeenth century
mentioned the system. Mercator realized its advantages for measuring
intervals. But especial honor should be paid to the nineteenth century
Englishman Bosanquet for devising an harmonium with a “generalized
keyboard” upon which the 53-system could be performed.

Other varieties of equal multiple division will be discussed in Chapter
VI, together with a number of unequal divisions, most of which are
extensions of just intonation. Practical musicians have rejected all of them,
chiefly because they are more difficult to play, as well as being more
expensive, than our ordinary keyboards.

Just intonation, as has already been mentioned, has had few devotees
since the early seventeenth century. The history of the mean-tone
temperament makes more interesting reading, since various theorists in
addition to Zarlino and Salinas had conflicting ideas as to the amount by
which the fifths should be tempered. Silbermann’s temperament of 1/6
comma for the fifths is the most significant for us, because he represents the
more conservative practice during the time of Bach and Handel. In his
temperament the thirds are slightly sharp, but the wolves are almost as
ravenous as in the Aron 1/4 comma system.

To some extent the final adoption of equal temperament for an
individual organ or clavier might have meant substituting this temperament
for some type of mean-tone temperament. We are told that organs in



England were still generally in mean-tone temperament until the middle of
the nineteenth century. England must have lagged behind the Continent in
this respect, and it is quite possible that the change, when it did come, was
radical.

But it is more likely that in most cases the change to equal temperament
was made more smoothly than this. The importance of unequal systems of
twelve notes to the octave has been generally neglected by the casual
historians of tuning, to whom only the Big Four (Pythagorean, just, mean-
tone, and equal) are of moment. It is my opinion, however, that the unequal
systems were of the greatest possible significance in bringing about the
supremacy of our present tuning system. Reference has already been made
to the early sixteenth century irregular systems of Schlick and Grammateus.
The former resembled the mean-tone temperament; the latter was derived
from the Pythagorean tuning. Bermudo repeated Grammateus’ tuning, and
his own second method was basically Pythagorean also. Ramis and
Agricola crossed just intonation with the Pythagorean tuning, with fairly
happy issue. Ganassi and Artusi treated just intonation and the mean-tone
temperament much as Grammateus and Bermudo had treated the
Pythagorean tuning.

Only a few years later than Grammateus, Aron described for organs the
mean-tone temperament, mentioned above. In it every fifth save one was
tempered by such an amount (1/4 comma, or about 1/18 semitone) that four
fifths less two octaves would produce a pure major third. Thus arose the
system that, with various modifications, was to be the strongest opponent of
equal temperament, so far as keyboard instruments were concerned, for two
or three hundred years. In the mean-tone temperament a sharped note, as

G”, is lower in pitch than the equivalent flattened note, as AP, by the great
diesis, which is almost half as large as a semitone.

After Aron’s time the mean-tone temperament, or some similar system,
was generally accepted for organ and clavier. But there were a few
dissenting voices. One was that of his exact contemporary Lanfranco,
whose practical tuning rules for keyboard instruments seem to agree with
no system other than equal temperament. Another was that of Fogliano,
who was apparently the first sixteenth century writer to follow Ramis’ lead
and use in a tuning system both the pure fifths and the pure thirds of just
intonation. But there is a difference; for he realized that the triads on D and

B® would be hopelessly out of tune in such a system, and therefore



recommended that there be a mean D and BP, each differing by half a
comma from a pair of just pitches. These two mean pitches hint at Aron’s
mean-tone system. Otherwise this is what we ordinarily understand just
intonation to be. Ironically enough, Fogliano’s method, although containing
more perfect thirds than Ramis’ did, is far inferior to it if one goes beyond
the ordinary bounds of two flats and three sharps. Beyond these bounds lay
in wait the howling wolves, to muffle whose voices was the task of many a
later worker in this field.

Fogliano had no immediate followers as an advocate of just intonation,
since the following generation was more concerned with temperament. But
almost a century later, certain mathematicians — as Galileo, de Caus, and
Kepler — proclaimed again the validity of pure thirds and fifths. Occasional
lone figures, both mathematicians and music theorists, were to speak in
favor of just intonation, even until our own day. But it is significant that the
great music theorists, such as Zarlino, Mersenne, and Rameau, presented
just intonation as the theoretical basis of the scale, but temperament as a
practical necessity. Equally great mathematicians with some understanding
of music, from Stevin to Max Planck, have hailed temperament.

From the middle of the sixteenth century, all the theorists agreed that the
fretted instruments, lutes and viols, were tuned in equal temperament.
Vicentino made the first known reference to this fact, going so far as to state
that both types of instrument had been so tuned from their invention. If we
may believe pictorial evidence, especially that of the Flemish painters, so
meticulous about detail, frets were adjusted to equal temperament as early
as 1500, although there is not complete agreement on this point.

In the National Gallery in London, for example, there are several
paintings in which the position of frets is shown plainly. A_Concert, by
Ercole de Roberti (1450-96), contains a nine-stringed lute and a small four-
stringed viol, both apparently in equal temperament. Marco Marziale’s
Madonna and Child Enthroned with Saints, painted between 1492 and
1507, has an eleven-stringed lute with intervals equally proportional. And
The Ambassadors, painted by Hans Holbein the Younger in 1533, has a six-
stringed lute, again in equal temperament. Negative evidence is furnished
by a painting by the early sixteenth century painter Ambrogio de Predis,
whose Angel Playing_on a Musical Instrument is playing a nine-stringed
lute on which the semitones run large, small, small, large, and then three

equal, as if the notes might have been C, C*, D, ED, E, etc.



Because of the ease of tuning perfect fifths, the Pythagorean tuning has
been the foundation of many of the later irregular systems, including that of
Kirnberger. It also had some importance for such sophisticated writers as
Werckmeister, Neidhardt, and Marpurg, whose systems with subtly divided
commas were directed to the intellect rather than to the ear of the practical
musician.

It becomes apparent, however, from the works of the men just
mentioned that an instrument that was “well tempered” was not necessarily
tempered equally. The title of Bach’s famous “48” meant simply that the
clavier was playable in all keys. Werckmeister and Neidhardt explained

clearly that in their systems the key of C would be the best and DP the
worst, with the consonance of the other keys somewhere between these
extremes.

Mersenne’s and Rameau’s modification of the 1/4 comma mean-tone
temperament resembles somewhat the “good” temperaments of
Werckmeister and Neidhardt, and Gallimard, with the aid of logarithms,
reached a very similar goal. Perhaps the best of these many irregular
systems was Thomas Young’s second method, in which six fifths are
perfect, and the other six are tuned flat by 1/6 Pythagorean comma, as in
Silbermann’s tuning. This would have been simpler to construct by ear than
most of the systems, and does have an orderly progression from good to
poor tuning as one departs from the most common keys.

In almost all of these irregular systems, from Grammateus to Young, all
the major thirds were sharp to some extent, thus differing from just
intonation and the mean-tone temperament, in which the usable thirds were
perfect and the others very harsh. For the practical musician it would have
been an easy matter, as time went on, to tune the “common” thirds still
sharper, so that all the thirds would be equally sharp, and his instrument
would be substantially in equal temperament. Probably this is exactly what
did happen.

The recorded opposition to equal temperament on the part of such men
as Werckmeister and even Sebastian Bach was to the rigorous mathematical
treatment implied by the name “gleich-schwebend.” Theirs was a practical
approximation to equality, and, from the keyboard compositions of Bach, it
is evident that his practice must have been as satisfactory as that of our
present-day tuners, else the great majority of his compositions would have
been unbearable.
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Chapter II. GREEK TUNINGS

Greek music theory is highly complex and difficult, with its alphabetical
notation, the dependence of musical rhythm upon poetic meter, and all the
rest of it. Our confusion is not lessened by the fact that scholars quarrel
about the exact interpretation of the modal scales and that a pitifully scant
remnant of the music itself is available for study today. Fortunately it is
possible to understand the essentials of Greek tuning theories without
entering into the other and more controversial aspects of Greek musical
science. Moreover, it is advisable that the Greek tuning lore be presented in
some detail in order that the attitude of many sixteenth and seventeenth
century theorists may be clarified.

The foundation of the Greek scale was the tetrachord, a descending
series of four notes in the compass of the modern perfect fourth. Most
typical was the Dorian tetrachord, with two tones and then a semitone, as A
G F E or E D C B. Two or more tetrachords could be combined by
conjunction, as the above tetrachords would be with E a common note. Or
they might be combined by disjunction, as the above tetrachords would be in
reverse order, with a whole tone between B and A. Tetrachords combined
alternately by conjunction and by disjunction correspond to our natural
heptatonic scale.

The Greeks had three genera—diatonic, chromatic, and enharmonic. A
diatonic tetrachord contained two tones and a semitone, variously arranged,
the Dorian tetrachord having the order shown above, as A G F E. In the
chromatic tetrachord the second string (as G) was lowered until the two

lower intervals in the tetrachord were equal. Thus A GP F E represents the

process of formation better than the more commonly shown A F* F E. In the
enharmonic tetrachord the second string was lowered still further until it was
in unison with the third string; the third string was then tuned half way
between the second and fourth strings. In notes the enharmonic tetrachord

would be A Gbb Eh EorAF ]!h E. Thus in the chromatic tetrachord there were
the consecutive semitones that we associate with the modern chromatic



genus; but the enharmonic tetrachord contained real quarter tones, whereas

our enharmonically equivalent notes, as FY and E, differ by a comma, 1/9
tone, or at most by a diesis, 1/5 tone.
Claudius Ptolemy has presented the most complete list of tunings

advocated by various theorists, including himself.! These (with one
exception to be discussed later) were shown by the ratios of the three
consecutive intervals that constituted the tetrachord, and also by string-
lengths for the octave lying between 120 and 60, using sexagesimal fractions
where necessary. The octave is the Dorian octave, as from E to E, with B-A
the disjunctive tone, always with 9:8 ratio. Ptolemy’s tables are given here
(Tables 1-21) with comments following. The fractions have been changed
into decimal notation.

Greek Enharmonic Tunings

Table 1. Archytas’ Enharmonic

Lengths 60.00 75.00 77.14 80.00 90.00 112,50 115.71 120.00
b

Names E 2 E‘ B A F F E
Ratios 5/4 36/95 20/27 9/8 a9/4 30,/3% 28/27
Cents 1200 814 T65 02 433 112 €3 0

Table 2. Aristoxenus’ Enharmonic

Lengths 60.00 76.00 '?B';Dﬂ 80.00 90.00 114.00 11'_!.00 120.00
Names E C C B A F ? E
Parts 16 2 2 10 24 3 3

Cents 1200 7€1 746 702 498 89 44 0



Lengths
Names
Ratios
Cents

Names
Ratics
Cents

Lengths

Names
Parts
Cents

Lengths

Names
Parts
Cents

Table 3. Eratosthenes’ Enharmonic

60.00 75,00 77.50 #80.00 90.00 112.50 116.25 120.00
E ¢ ¢ B A F P E
5/4 24/23 46/45 9/8 5/4 24/23 46/45

1200 814 740 702 498 112 J8 0

Greek Chromatic Tunings

Table 4. Archytas’ Chromatic

60.00 71.11 77.14 80.00 ©0.00 106.67 115.71 120.00

E pb C B A GY F E
32/27 243/224 28/27 9/8 32/27 243/224 28/27
1200 906 765 702 498 204 63 0

Table 5. Aristoxenus’ Chromatic Malakon

60.00 74.67 77.33 80.00 ©0.00 112.00 116.00 120.00
E D° o B A GY F E
143 2 10 22 4 4
1200 821 761 102 498 119 59 0

Table 6. Aristoxenus’ Chromatic Hemiolion

60.00 74.00 77.00 80.00 90.00 111.00 115.50 120.00
E D o B A c? F E

14 3 3 10 21 4

1200 837 768 702 498 135 66 0



Lengths
Names
Parts
Cents

Lengths
Names

Hatios
Cents

Lengths
Names
Ratios

Cents

Lengths
Names
Ratios
Cents

Lengths

Nzames
Ratios

Cents

Table 7. Aristoxenus’ Chromatic Tonikon

§0.00 72.00 76.00 B80.00 00.00 108.00 114.00 120.00
E p° B A G® F E
12 4 4 10 18 5 §
1200 884 791 702 498 182 89 0

Table 8. Eratosthenes’ Chromatic

60.00 72,00 76.00 80.00 90.00 108.00 114.00 120.00
E pY C D A Gh F E
6/5 19/18 20/139 9/B 6/ 19/18  20/19

1200 B84 791 702 498 182 89 0

Table 9. Didymus’ Chromatic

60.00 72,00 75.00 80.00 90.00 108.00 112.50 120.00
E Db C B A G° F E
6/5 25/24 16/15 D9/8 6/5 25/24 16/15

1200 884 814 702 498 162 112 0

Table 10. Ptolemy’s Chromatic Malakon

60.00 72.00 77.14 80.00 90.00 108.00 115.71 120.00

E pb C B A Gb F E
6/5 15/14 28/27 9/8  6/5 15/14  28/27
1200 884 1765 702 498 182 63 0

Table 11. Ptolemy’s Chromatic Syntonon

60.00 70.00 T6.36 80.00 90.C0 105.00 114.566 120.00

E D° C B A GP F E
7/6 12711 92/21 /8 7/6  12/11  22/21
1200 933 1783 702 488 231 81 0



Lengths

Names
Ratios
Cents

Lengths

MNames
Parts
Cenls

Lengths
Names

Parts
Cents

Lengths
Names

Ratios
Cents

Greek Diatonic Tunings

Table 12. Archytas’ Diatonic

60.00 67.50 77.14 B0.00 90.00 101.25 11571 120.00
B D c B A G F E
o/8  8/7 28/27 9/8 9/8  8/1 28,/27

1200 996 765 702 498 294 83 0

Table 13. Aristoxenus’ Diatonic Malakon

60.00 70.00 76.00 80.00 90.00 105.00 114.00 120.00
E D C B A G F E
10 6 4 10 15 9 G

1200 933 791 702 498 231 89 0

Table 14. Aristoxenus’ Diatonic Syntonon

60.00 63.00 76.00 B80.00 080.00 102.00 114.00 120.00
E D c B A G F E
8 3 4 10 12 12 6
1200 883 191 702 498 281 89 0

Table 15. Eratosthenes’ Diatonic

60.00 67.50 75.94 80.00 90.00 101.25 113.91 120.00
E D C B A G F E
o/8  9/8 256/243 9/8  ©/8 9/8  256/243
1200 996 792 702 498 294 90 0



Lengihs
Names
Ratios
Cents

Lengths
Names
Ratios
Cents

Lengths
Names

Fatios

Cenis

Lengths

Names
Ratios
Cents

Lengths

Names
Ratios
Cents

Table 16. Didymus’ Diatonic

60.00 67.50 75.00 £0.00 90.00 101.26 112,50 120.00
E D C B A G F E
/8 10/0 18/15 9/8  9/8 10/  16/15
1200 996 Bl14 702 498 204 112 0

Table 17. Ptolemy’s Diatonic Malakon

60.00 68.57 76.19 B80.00 90.00 102.86 114.27 120.00
E D C B A G F E
8/1 10/9 21/20 9/8 8/7  10/8  21/20

1200 969 787 702 498 265 85 0

Table 18. Ptolemy’s Diatonic Toniaion

60.00 67.30 77.14 B80.00 90.00 101.25 115.71 120.00
E D C B A G F E

9/8 8/7 28/27 9/8 9/8 8/17 28/27
1200 996 765 702 458 254 63 0

Table 19. Ptolemy’s Diatonic Ditoniaion

60.00 €750 75.94 80.00 50.00 101.26 113.81 120.00

E D C B A G F E
9/8 9/8 256/243 9/8 9/8 9/8 256,243
1200 006 192 702 438 204 90 0

Table 20. Ptolemy’s Diatonic Syntonon

60.00 €6.67 75.00 60.00 50.00 100.00 112.50 120.00
E D C B A G F E
10/9 9/8 16/15 9/8 10/9 9/8 16/15
1200 1018 814 702 498 316 112 0



Table 21. Ptolemy’s Diatonic Hemiolon

Lengths 60.00 66.67 73.33 80.00 00.00 100.00 110.00 120.00

Names E D C E A G F E
Ratios 10/9 11/10 12/11 9/8 10/9 11/10 12/11
Cents 1200 101B B53 702 498 316 151 0

Only two of these seventeen or eighteen independent tunings have had
any great influence upon modern music theory—the third and fourth of
Ptolemy’s diatonic scales, commonly called the “ditonic” and the “syntonic.”
The former is the same as Eratosthenes’ diatonic, and is the old Pythagorean
tuning. It gains its name from the fact that its major third (ditone) consists of
a pair of equal tones. The latter, the “tightly stretched” in contrast to the
“soft” (malakon), is what we know as just intonation. Didymus’ diatonic
contains the same intervals as Ptolemy’s syntonic diatonic, but with the
minor tone (10:9) below the major tone (9:8) instead of the reverse.
Didymus’ arrangement 1s the more logical for constructing a monochord;
Ptolemy’s in terms of the harmonic series.

The theorists of the sixteenth and seventeenth centuries, eager to bolster
their ideas with classical prototypes, pointed out that the just tuning was that
of Didymus and Ptolemy. But they ignored the other diatonic tunings of
Ptolemy. They liked to point out further that in three of the enharmonic
tunings the pure major third (5:4) appears, and in four of the chromatic
tunings the pure minor third (6:5). But only Didymus used enharmonic and
chromatic tunings that really resembled just intonation. His chromatic is

tuned precisely as E, C*, C, etc., would be in just intonation, using the
chromatic semitone, 25:24, which appears in no other tuning. In his
enharmonic, not only does the major third have the ratio 5:4, but the small
intervals are “equal” quarter tones, resulting from an arithmetical division of

the 16:15 semitone.> The other nine enharmonic and chromatic tunings
depart more or less from Didymus’ standard.

Let us examine more of the peculiarities of these Greek tunings.
Archytas has used the same ratio (28:27) for the lowest interval in each
genus, thus having an interval (63 cents) that is much smaller than most of
the semitones and larger than the quarter tones. The ditonic semitone,

256:243, 1s about the same size as Ptolemy’s “soft” semitone, 21:20, being a
comma smaller than the syntonic semitone, 16:15. The tones range from



minimum, 11:10, through minor, 10:9, and major, 9:8, to maximum, 8:7.
Archytas’ minor third, 32:27, is a comma larger than the syntonic third, 6:5,
and more than a comma smaller than Ptolemy’s minor third, 7:6.
Eratosthenes’ major third, 19:15, is about the same size as the Pythagorean
ditone, 81:64, and is about a ditonic comma larger than the syntonic third,
5:4.

Ever since his own age a great controversy has raged about the teachings
of Aristoxenus. Instead of using ratios, he divided the tetrachord into 30
parts, of which, in his diatonic syntonon, each tone has 12 parts, each
semitone 6. Thus, if we are to take him at his word, Aristoxenus was here
describing equal temperament. The sixteenth and seventeenth century
theorists were of the opinion that such was his intention, the advocates of
equal temperament opposing the name of Aristoxenus to that of Ptolemy.

Ptolemy himself did not so understand Aristoxenus’ doctrines. With a
fundamental of 120 units, the perfect fourth above has 90 units. Thus, as
shown in the tables, Ptolemy subtracted Aristoxenus’ “parts” from 120. His
enharmonic then agrees with that of Eratosthenes, and his chromatic tonikon
with the latter’s chromatic. But Aristoxenus’ diatonic syntonon does not then
quite agree with the Pythagorean (ditonic) diatonic, although the latter is the
only Greek tuning that contains two equal tones. His diatonic malakon, as
Ptolemy has shown it, is unlike any of the other timings; whereas in its
succession of intervals—large, medium, small — it resembles Ptolemy’s
diatonic malakon or chromatic syntonon.

So it seems quite likely that Aristoxenus did not intend to express any
new timings by his adding together of parts of a tone, but simply to indicate
in a general way the impression that current tunings made upon the ear. But
his vagueness has made possible all sorts of wild speculations. It is even
possible, by an improper manipulation of the figures, to argue that
Aristoxenus was a proponent of just intonation. Take his enharmonic: 24 + 3
+ 3. Add these numbers to 90 in reverse order as before, getting 90 93 96
120. Then consider these numbers to be frequencies rather than string-
lengths. The result is practically the same as Didymus’: 5/4 x 32/31 x 31/30.
Or take Aristoxenus’ diatonic syntonon: 12 + 12 + 6. Treat it as we have just
treated his enharmonic, getting 90 96 108 120. If these are then taken as
frequencies, we have Ptolemy’s syntonic, 10/9 x 9/8 x 16/15.

The paramount principle in Ptolemy’s tunings was the use of
superparticular proportion, a ratio in which the antecedent exceeds the



consequent by unity. (The Latin prefix “sesqui” is conveniently used to
describe these ratios, e.g., “sesquiquarta,” meaning 5/4.) Ptolemy used 5/4,
6/5, 7/6, 8/7, etc. Seven of the eight tunings that bear his own name are
constructed entirely of superparticular proportions, the eighth being the
ditonic, or Pythagorean. Seven tunings that he has ascribed to other writers
also use these ratios exclusively, including all of Didymus’ tunings,
Archytas’ enharmonic and diatonic, and FEratosthenes’ chromatic
(Aristoxenus’ chromatic tonikon). In just intonation the ratios are, of course,
super particular, and this feature only would have appealed to Ptolemy and
his contemporaries. For, despite the many apparently just intervals used in
the given tunings, Ptolemy recognized no consonances other than those of
the Pythagorean tuning—fourth, fifth, octave, eleventh, twelfth, and fifteenth.

It is easy to obtain, by algebra, all the possible divisions of the tetrachord
built up entirely by superparticular proportions. (A theory for the
superparticular division of tones is shown in connection with Colonna, in
Chapter VII.) Eliminating those in which one interval is considerably
smaller than the smallest enharmonic quarter tone (46:45), we find that,
collectively, the Greeks had not omitted many possibilities. Other
enharmonic tunings similar to Ptolemy’s would be 5/4 x 22/21 x 56/55 and
5/4 x 26/25 % 40/39. Chromatic tunings would include 6/5 x 13/12 x 40/39;
7/6 x 9/8 x 64/63; 7/6 x 10/9 x 36/35; and 7/6 x 15/14 x 16/15. Two others
are difficult to classify: 8/7 x 13/12 % 14/13 might best be considered a
chromatic tuning, something like 14 + 8 + 8 in Aristoxenus’ parts. And 8/7
8/7 x 49/48 is undoubtedly a variant of the ditonic tuning, but with a quarter
tone instead of a semitone at the bottom, perhaps 14 + 14 + 2.

In later chapters we shall see many echoes of Greek tuning methods, not
only in such well-known systems as the Pythagorean and the just, but also in
the modified systems, such as Ganassi’s, and in irregular systems, such as
Dowland’s. Unusual superparticular intervals are used by Colonna in the
poorest timing system shown in this book, and also by Awraamoff, whose
system is even worse.

I Claudii Ptolemaei Harmonicorum libri tres. Latin translation by John Wallis (London, 1699).

2 Didymus’ enharmonic is not included in the above tables.
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Chapter III. MEANTONE TEMPERAMENT

It is not definitely known when temperament was first used. Vicentino stated
that the fretted instruments had always been in equal temperament. As for
the keyboard instruments, Zarlino declared that temperament was as old as
the complete chromatic keyboard. It may well be that some organs in the
fifteenth century had had temperament of a sort, although the Pythagorean
tuning continued to have too many advocates not to have been dominant in
the earlier period. However that may be, Riemann discovered the first
mention of temperament in a passage from Gafurius’ Practica musica

(1496).! There, among the eight rules of counterpoint, Gafurius said that
organists assert that fifths undergo a small, indefinite amount of diminution
called temperament (participata). Since he was reporting a contemporary
fact, rather than advocating an innovation, the practice may have begun
decades earlier than his time.

Notice that Gafurius stated that there was nothing regular about the
temperament of his day, nor were the fifths diminished by any large amount.
It seems reasonable to believe that when organists first became dissatisfied
with the extremely sharp thirds of the Pythagorean tuning, they would go
about any alteration of the fifths in a gingerly manner, lopping off a bit here
and a bit there. Grammateus’ division of Pythagorean tones into equal

semitones came only twenty-two years after Gafurius’ observation,?> and
ranks very high among irregular systems that approach equal temperament.
It is easy to believe, therefore, that organs were tuned as well in 1500 as they
generally are today.

Dechales had no authority for stating that Guido of Arezzo was the father
of temperament®. The association of Ramis* with temperament is one of the
most common misconceptions in the history of tuning. And, although
Schlick’s system® undoubtedly can properly be described as a temperament,
it is just as surely of an irregular variety. It is well to mention these names,
and discard each of them, before saying that full credit for describing the
meantone temperament must go to Pietro Aron.



In Aron’s Toscanello® there is a chapter entitled “Concerning the
temperament (participation) and way of tuning the instrument.” The tuning
is to be made in three successive stages (see Table 22). First, the major third,
C-E, is to be made ‘“sonorous and just.” But the fifth C—G is to be made ““a
little flat.” The fifth G-D is to be similarly flattened, and then A is to be
tuned so that the fifths D—A and A-E are equal. The idea, of course, is to
ensure an equality of these four fifths, so far as it can be accomplished by
ear.

Table 22. Aron’s Meantone Temperament (1/4 Comma)

Names C‘) C'H‘-T'l D-% Eb"i‘ E—L F"’i F*'i G"-'Ii G*'z .ﬁ.'% Bl’f% B‘% c°®
Cents 0 76 193 310 36€ 503 579 6GDBYT 773 4690 1007 10683 1200
M.D, 20.0; 8.D. 20.2

In the second stage of tuning, the fifths F-C, B°-F, and Eb-BP are
tempered exactly the same as the diatonic fifths had been. Finally, in the

third stage, C* and F* are tuned as pure thirds to A and D respectively. Aron
says nothing about G*. With Kinkeldey we can say that this note “probably

belongs to the third group,”” and would be tuned as a pure third to E.

The name “meantone” was applied to this temperament because the tone,
as C-D, is precisely half of the pure third, as C—E. Aron said nothing about
the division of the comma. But since the pure E is a syntonic comma lower
than the Pythagorean E, and each fifth is to be tempered by the same
amount, the fifths will all be tempered by 1/4 comma. It is easy to calculate
the ratio of the meantone fifth: the major third has the ratio 5:4; hence the
ratio of the tone will be the square root of this, or ,[5.9. The ratio of the
major ninth will be twice the ratio of the tone, or 4/§:1. The ratio of the fifth
will be the square root of the ratio of the ninth, or 4f§5.1. If we consider the
syntonic comma to be 21.5 cents, a fifth diminished by 1/4 comma will be
702.0 — 5.4 = 696.6 cents.

The deviation for the meantone temperament is nearly as large as for just
intonation. That would seem to indicate that temperament makes for little
improvement. Strangely enough, this is absolutely true, so far as the remote
keys are concerned. However, if the deviation were to be measured only



from EP to G”, without allowing for the enharmonic uses of notes, the
meantone temperament would be an easy victor over just intonation. That is,
if we were computing the deviation of eleven fifths only, omitting the wolf
fifth of 737 cents, the standard deviation for the meantone temperament
would be much smaller than that for just intonation. But, since our ideal is
equal temperament, the deviation as computed shows accurately enough how
very unsatisfactory this tuning is when its narrow bounds are overstepped.
The meantone temperament was used from the beginning upon keyboard
instruments only. It was the temperament that Vicentino intended for his
Archicembalo when he said that it may be tuned “justly with the
temperament of the flattened fifth, according to the usage and tuning
common to all the keyboard instruments, as organs, cembali, clavichords,
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and the like.”® Zarlino called the meantone temperament a “new
temperament” and said that it is “very pleasing for all purposes” when used
on keyboard instruments.” To divide the major third into two mean tones,
Zarlino advocated the Euclidean construction for a mean proportional, and
of course the fifth could be constructed from the major ninth by the same
means.

Verheijen’s reply to Stevin’s discussion of equal temperament explained
the meantone temperament in detail '° He even included a monochord for it
(Table 23), and thus has the distinction of being the first person, so far as we
know, to put its ratios into figures (cents values as in Aron, Table 22,
beginning with F as 503).

Table 23. Verheijen’s Monochord for Mean-tone Temperament

Lengths 10000 9750 8944 8560 BOO0 7477 7155 6687 6400 5961

7 1 o N s .3
Names FF Ff1 072 G¥T A Bt B"? 71 ot pTi

55301 5350 5000
gEb*T ETT ¢

In Spain, Sancta Maria described a practical tuning system that may have
been the same as the mean-tone tuning.!! He said that on the clavichord and
the vihuela (the Spanish lute) each fifth is to be “a little flat.” In fact, the
diminution is to be “so small that it can scarcely be noticed.” Since he did
not say whether the thirds were to be pure or a little sharp, we cannot know



whether his system was the real mean-tone or came nearer equal
temperament. However, he held that a tone cannot be divided into two equal
semitones, and consistently made the diatonic semitone larger than the
chromatic semitone, as it would be in just intonation or the Mean-tone
temperament.

The first German writer to describe the Mean-tone temperament was

more explicit. This was Michael Praetorius,'? in a chapter on the tuning of

the “Regal, Clavicymbel, Symphonien und dergleichen Instrument.” His was
a practical system, with major thirds and octaves pure, and fifths flat.
Praetorius explained carefully how various intervals are altered by fractional
parts of the comma.

Otto Gibelius'® showed a method for obtaining an approximately correct
monochord for the meantone temperament. First he made a table in which
were shown pairs of numbers differing by the syntonic comma for every

note in a 14-note octave, extending from AP to D?. Then he made an
arithmetical division of each comma, with 3/4, 1/2, or 1/4 comma subtracted

from the larger number, to obtain the tempered value. C, E, G*, and Ab
needed no temperament (see Table 24). His results check closely with

numbers obtained by taking roots.!* For example, his D is 193200; it should
be 193196. His G is 144450 instead of 144447. Since the comma is small
relative to the intervals of the scale and since as much as a quarter or a half
of it is used, the error could not be great. An arithmetical division of the
ditonic comma into twelfths in the construction of equal temperament would
create greater errors than this for certain notes of the division.

Table 24. Gibelius’ Monochord for Mean-tone Temperament

Lengths 216000 EUGTEU 193200 13*395 IEUJEE 5 172800 15153{] 154:15{]
1 --
Names c° CJ’" D z ]j#" gb* : E™ F'4 F# %

144450 138240 135000 120200 120750 115560 108000

3 L 3
G4 cLAR L AT B0 E B 1 4
Lemme Rossi,'> writing in the same year as Gibelius, would have
approved the latter’s approximation for the meantone temperament, for he
himself said that the arithmetical division of the comma differs “insensibly”
from a geometrical division. In the example that he gave, the geometrical



mean between the two numbers, 31104 and 30720, in the ratio of 81 to 80, is
30911, and the arithmetical mean is 30912, certainly a negligible difference.
But, he said, the correct string-lengths for the Mean-tone temperament can
be obtained both “easily and quickly with the table of logarithms.”

Our final monochord for the Mean-tone temperament proper will be

Rossi’s “Numeri del sistema participate.”' He has given it for a 19-note
octave commencing on A (see Table 25). Since C itself is a tempered value
here, we have transposed the system up a minor third from A to C, selecting
those notes that would belong to the ordinary Mean-tone scale. The number
used for his fundamental had been previously used in a table of just
intonation.

Table 25. Rossi’s Monochord for Mean-tone Temperament

Lengths 41472 39600 37005 34668 33178 31008 20676 27734 26542

a —! il |:I+E -1 -I! -— -3 ,n-:
Names C cki’a p2 EUVT E Fa F3I g1 ¢

24806 23184 22187 20736
1 1 5

ATt pbz BT °

Another sort of approximation connected with the meantone

temperament was given by Claas Douwes.!” In describing the bonded
clavichord he gave simple ratios (most of them super-particular) for various
intervals that would occur on the same string. For example, the highest string

has C, B, B®, and A. C-A is 6:5; B-A, 19:17; B"-A, 15:14. On the next
string, G*—F is 7:6. Two octaves lower, the ninth string has only two notes,

G* and G, with the ratio 24:23.

Douwes had explained that his was a tempered system. His rational
ratios are good approximations to the surds of the meantone temperament.
His minor third, with ratio 6:5, is 316 cents; the meantone minor third is 310.
His augmented second, 7:6, is 267 cents; the meantone augmented second is
270. His tone, 19:17, is almost 193 cents; the meantone tone is practically
the same. His diatonic semitone, 15:14, is 119 cents; the meantone diatonic
semitone, 117. His chromatic semitone, 24:23, is 74 cents; the meantone
chromatic semitone, 76. His system agrees with itself as well as with the
ordinary meantone system. For example, the tone should be the sum of the
diatonic and the chromatic semitones, or 15/14 x 24/23. This product is



3420:3059; his ratio for the tone, 19:17, equals 3420:3060, a close
correspondence.

In tracing the later history of the meantone temperament, it would be
easy to name theorists in all the principal European countries who continued
to favor an unequal tuning of keyboard instruments later than the first
quarter of the eighteenth century. But, unless, like Galin in 1818, they
specifically say that they favor the tuning in which the fifths are tempered by

1/4 syntonic comma or its equivalent (31-division),'® we have no right to
call their methods the meantone temperament. This is the fallacy of so much
that has been written on this subject.

Other Varieties of meantone Temperament

Strictly, there is only one meantone temperament. But theorists have
been inclined to lump together under that head all sorts of systems intended
for keyboard instruments. For example, the statement often appears in print
that in England the meantone temperament was used for organs until the

middle of the nineteenth century. William Crotch,'” writing early in that
century, wrote: “As organs are at present tuned, (with unequal temperament),
keys which have many flats or sharps will not have a good effect, especially
if the time be slow.” That statement is enough to cause a host of later English
writers to say that Crotch reported the meantone temperament to be in use in
his age.

But later in his book Crotch had this to say: “Unequal temperament is
that wherein some of the fifths, and consequently some of the thirds, are
made more perfect than on the equal temperament, which necessarily
renders others less perfect. Of this there are many systems, which the student

is now capable of examining for himself.”?? In other words, Crotch is saying
that there was a great diversity in the tuning of organs in his day.

In Chapter VII, “Irregular Systems,” twenty-odd men are mentioned who
collectively have described fifty of the “many systems,” none of which is the
meantone temperament. In the present chapter we propose to describe still
other systems of temperament, systems formed on the same general pattern
as meantone temperament. Bosanquet called “regular” a temperament

constructed with one size of fifth.?! The Pythagorean tuning, equal
temperament, meantone temperament—all are regular systems. The systems



that follow are also regular, with values for the fifth smaller than that of
equal temperament and (usually) larger than that of the meantone
temperament. Since their construction is similar, it is easy to describe them
as varieties of the meantone temperament. In all of them, the tone is
precisely half of the major third. No harm will be done by such a
nomenclature if we realize that these are regular temperaments which the
earlier theorists themselves considered of the same type as the 1/4-comma
temperament and some of which they preferred to it.

The first regular temperament to be advocated after the description of the
ordinary meantone temperament was that described by Zarlino in which

“each fifth remains diminished and imperfect by 2/7 comma.”??> Although
Zarlino showed a monochord with this tuning for the diatonic genus only, he
intended it also for the chromatic genus—by which he meant the ordinary
black keys. He also described an enharmonic genus, having 19 notes to the
octave, as applied to a cembalo which Master Domenico Pesarese had made
for him. This must have had the same tuning, although Zarlino did not
clearly say so. Most of these varieties of the meantone temperament will
have a smaller deviation when applied to a keyboard with 19 or more notes
to the octave than upon the usual keyboard. Zarlino’s temperament
corresponds to the 50-division, and, as such, will be discussed in the chapter
on multiple division.

In Table 26, we see the 2/7-comma temperament applied to a keyboard
with 12 notes to the octave. Since the amount of tempering is greater than
1/4 comma, the deviation is greater than for Aron’s system. It is, in fact, a
very poor system, and Zarlino later admitted it to be inferior to the 1/4-
comma system. The only just interval in it is the chromatic semitone. Tanaka

liked it “because all the imperfect consonances are impure alike,”?? that is,
the major and minor thirds are 1/7 comma flat (3 cents), and the major and
minor sixths are sharp by the same amount. To construct it on a monochord,

Zarlino would use the questionable virtues of the mesolabium.*

Table 26. Zarlino’s 2/7 — Comma Temperament

4
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Names C° c*™ D7 gb*% g™F §'7 F#°T "7 gFF 277 gb*7 BT
Cents 0 70 191 313 383 504 574 606 817 887 1008 1078 1200
M.D. 25.0; S.D. 25.3



The next variety of meantone temperament is also highly unsatisfactory
when applied to an octave of twelve semitones. This is the 1/3-comma
temperament, the invention of Francisco Salinas, which he described as
follows: “The first of them [the other two were the 2/7-comma and the 1/4-
comma temperaments| has the comma divided into three parts equally
proportional, of which the minor tone is increased by one part and the major

tone is decreased by two parts.”>> Salinas showed that his method results in
pure minor thirds, tritone, and major sixth. But the fifth is diminished by 1/3
comma, and so is the major third. On the whole this tuning does not compare
favorably with the others, but Salinas added: “Although this imperfection is
seen to be greater than that which is found in the other two temperaments,
nevertheless it is endurable.”

Salinas intended his temperament for an octave containing 19 notes,
divided into the three genera—diatonic, chromatic, and enharmonic. His
special reason for advocating this tuning was the ease of realizing it upon the
monochord. Seven of the notes can be obtained by a series of just minor

thirds below and above the fundamental. Thus we obtain C, D¥, EP, F*, Gb,

A, and B, and Salinas has given their string-lengths for the octave 22500 to
11250.
To find the notes D and E, two mean proportionals must be inserted in

the tritone, C—F”. This “will be very easy to those who know the use of a
certain instrument invented by Archimedes, which is called mesolabium,
from finding mean lines by it.” The remainder of the notes can then be
obtained by minor thirds from D and E.

We agree with Salinas that the thirds and especially the fifths of the 1/3-
comma temperament are less pleasing than those of the other two. But, in
addition to its being capable of quicker tuning than the Zarlinian 2/7-comma
method, it has an advantage possessed by neither of the other methods: it is
practically a closed or cyclic system. Among its 19 notes there is no fifth
containing a wolf; nor are there any discordant thirds. It is an equal
temperament of 19 notes.

In recent times the 19-division has had eloquent advocates, to whom
reference is made in the chapter on multiple division. Let us see how well
the 1/3-comma system is adapted to a 12-note keyboard. As Table 27 shows,
this is the poorest tuning of all-like Zarlino’s method, it is worse than just
intonation. However, too many theorists who have described these two
systems have neglected to add that they are excellent for a 19-note octave.



Table 27. Salinas’ 1/3 — Comma Temperament

1 .2 . | 1 - - R~ I
Names € C*¥ 3 p 3 P ETV F S ™ "7 G*™3 A™ BT 8”7 °
Cents 0 64 190 316 379 505 56% 695 758 BB4 1010 1074 1200
M.D. 30.3; S.D. 30.7

It would help us in portraying an orderly development of the 12-note
temperaments if we could show that little by little the temperament of the
fifth was reduced from the 1/4 comma of the meantone temperament to the
1/11 comma (1/12 ditonic comma equals 1/11 syntonic comma) of equal
temperament. Probably there was such a tendency. But it is only a fortunate
accident that Verheijen included the ratio of the fifth for the 1/5-comma
temperament, together with the ratios for the three temperaments discussed

by Zarlino and Salinas.?® Verheijen’s first ratio for the fifth is the cube root
of 10:3 (1/3-comma temperament); then the fourth root of 5:1 (1/4-comma);
the fifth root of 15:2 (1/5-comma); the seventh root of 50:3 (2/7-comma).
Verheijen’s casual reference to the 1/5-comma temperament indicates that
even then some people were using it. Rossi, a couple of generations later,

also referred briefly to the 1/5-comma temperament, including it as one of

the regular types then in use.?’

The temperament shown in Table 28 has in its favor, like the 1/3-comma
temperament, the equal distortion of the fifths and the major thirds, the
former being 1/5 comma flat, the latter sharp by the same amount. In it the
diatonic semitone is pure. The deviation of this temperament is only about
two-thirds that of the 1/4-comma system.

Table 28. 1/5 - Comma Temperament (Verheijen, Rossi)

7 2
Names C' c* " *p~® El:'*"Jii E‘; Fl'; F‘*'"E G"; ri*“: A-i nf% B C*
Cents 0 83 195 307 390 502 586 698 781 893 1005 1083 1200
M.D. 14.0; S.D. 14,2

There is an odd reference to the 1/5-comma temperament. Dechales?®
gave a monochord which he called the “Diatonic scale of Guido of Arezzo.”



It 1s, however, a chromatic scale, and, so far as can be ascertained, has
nothing in common with any of the ideas expressed by Guido.

It seems evident that Dechales has intended the monochord in Table 29
for the 1/5-comma temperament. Its ninth note differs greatly from the cents

value given in the previous table; but the note is AP in Dechales’ monochord

and would naturally be more than a comma higher than the G* more
commonly used. Other divergences can be explained by the fact that
Dechales has not expressed his numbers with great accuracy. However, the
mean value for his diatonic semitone 1s 111.4, against 112.0 for the 1/5-
comma temperament; for his chromatic semitone, 84.0 cents against 83.2.
How he reached the conclusion that Guido favored such a temperament
remains a mystery. Actually Dechales himself ascribed the 1/4-comma
temperament to Guido (rather than the 1/5-comma), contrary to the evidence
of this monochord.

Table 29. Dechales’ “Guidonian” Temperament (1/5 - Comma)

Lengths 60 57% 533 504y 47§ 44-% 427 405 373 353 33; 315 30

Names C ¢f D Eb E F F# G ab A B° B C

Cents 0 85 194 312 395 502 587 €96 808 893 1009 1090 1200
M.D. 13.3; S.D. 13.8

The 1/5-comma variety of meantone temperament comes close to the 43-
division. As such, it is discussed briefly in Chapter VI, with the principal
reference to Sauveur.

Another temperament discussed by Rossi?? has its fifths flattened by 2/9
comma (see Table 30). He merely called it “another tempered system,”
without ascribing it to any theorist. Romieu identified this temperament with

the 31-division, and thus credited it to Huyghens.’? Actually, as we have
already said, the 1/4-comma temperament comes closest to the 31-division.
But perhaps other writers before Romieu confused these temperaments. For

example, Printz’! spoke of a “still earlier” temperament that takes 2/9
comma from each fifth—earlier, perhaps, than Zarlino’s 2/7-comma
temperament, which he had been previously discussing. He also might have
meant Vicentino’s 31-division, since there are no early references to the 2/9-
comma temperament.



Table 30. Rossi’s 2/9 - Comma Temperament

_l-'l _4. +3 _:El 3 _1 _2 14 a 4 12
Names C' C*" T DY ED I E™® Fs p#™1 "o g¥ " ® A™3 pb's g~% (°

Cents 0 79 194 308 388 503 582 697 T77 8932 1006 1085 1200
M.D. 11.0; 8.D. 17.2

Since 2/9 1s the harmonic mean between 1/4 and 1/5, the deviation for
this temperament is approximately the mean of the deviations of the other
two temperaments. Like Zarlino’s 2/7-comma temperament, its third is
altered half as much as its fifth, being 1/9 comma sharp. Its augmented

second, as F-G”, is pure. The 74-division corresponds to the 2/9-comma
temperament, and Drobisch liked this division best of all systems that form
their major thirds regularly.

Schneegass gave an interesting geometrical construction for what was
much like the common meantone temperament, but more like the 2/9-

comma temperament’”. His contention was that the diatonic semitone
contains 3 1/4 “commas” and the chromatic semitone 2 1/4. (These commas
of 35.3 cents have nothing in common with either the ditonic [23.5] or the
syntonic [21.5] comma). Thus the tone contains 5 1/2 commas, and the
octave 5 X 5 1/2 + 2 x 3 1/4 = 34 commas. As is shown in Chapter VI, the
34-division has fifths that are almost 4 cents too large and thirds that are 2
cents too large. But this was not what Schneegass had in mind. His
theoretical fifth had the ratio 160:107, or 696.6 cents, which is precisely the
size of the meantone fifth, and he directed that this ratio be used twice to
form the tone.

Then came the application of the doctrine about commas: A right
triangle was to be constructed, with the space of the tone, G—A, as base, and
thrice this length for the altitude (see Figure A). Note that “space” here does
not refer to the total length of a line, but rather to the distance from one point
of division to another Since 3 1/4:2 1/4 = 13:9, the acute angle at the top was
to be divided in the ratio of 13:9, with the larger angle toward A. The point

where this line cut the base was to be G*. Now tan'!1/3 = 18° 26°,and 13/22

of this angle is 10° 53°. The space between G” and A, then, would be 3 tan
10° 53° = .57681 of the space between G and A. From the figures in his
table, the division was made with extreme care. The ratio in the table of the

space from G” to A to the space from G to A is 15/26 or .57692. By a series



of lines parallel to the base, he cleverly divided the other tones (B"-C, C-D,

EP-F, and F-G) into chromatic and diatonic semitones proportional to the
division of G—A.
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Fig. A. Schneegass’ Division of the Monochord Reproduced by courtesy of
the Sibley Library of the Eastman School of Music

To examine the assumption that Schneegass made, let us designate as a
the angle 10° 53” and as P the angle 18° 26°, and as L the length for the note

A. Then the length for G* was L + tan a, and for G it was L + tan B. His
assumption:

lug(L + tang): lug(L + tan a >= B:a
L L

In general this would be only a rough approximation. In this case, where f :
o = 22:13, it works very well indeed.

Schneegass’ actual fifth, G—D,of 698.1 cents is a little larger than his
theoretical fifth of 696.6, and the mean of all 11 good fifths i1s 697.2 cents.
This last figure is precisely the fifth of the 2/9-comma temperament. The
mean value of his tones is 194.0 cents, as compared with 194.4 cents of the
2/9-comma temperament, and his geometrical division of the tones yields
semitones of 113.9 and 80.1 cents, compared with 114.0 and 80.4 cents.



Schneegass’ actual fifth has approximately the ratio 226:151, instead of
his theoretical 160:107. It is idle to speculate why his figures fail to
correspond with his theory, or why they agree so beautifully with the 2/9-
comma temperament. The significant thing is that they agree so well with
themselves, which is an indication of the soundness of his mathematics!
There is, however, one puzzling clue to his division of the tone. Suppose the
space of the tone G—A had been divided arithmetically in the ratio of 13:9,
instead of the more complicated division of the angle actually used. Then
Schneegass’ G” would have been at 86.100 instead of at 85.967. This would
have made the G* 3.3 cents lower than in the table, and his tone would have
been divided into semitones of 117.7 and 76.0 cents. Now the semitones of
the 1/4-comma temperament are of 117.1 and 76.0 cents respectively. Thus
an arithmetical division of his tones would have come close to the
temperament which is suggested by his theoretical fifth. However, his actual
division (Table 31) with a 15:11 ratio, is very consistent with itself, as well
as with the 2/9-comma temperament.

Table 31. Schneegass’ Variety of meantone Temperament

Lengths 90.000 85.967 80.467 75,267 T71.8B67 67.267 64.200 60.133
Names G Gt A b B C ct D
Cents 0 79 194 309 389 504 585 698

56.300 53.750 50.367 48,083 45.000
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M.D. 16.7; S.D. 16.9

Robert Smith?3 is responsible for three wholly unsatisfactory varieties of
the meantone temperament. He told first of a Mr. Harrison, who tuned his
viol by “taking the interval of the major third to that of the octave, as the
diameter of a circle to its circumference....It follows from Mr. Harrison’s
assumption, that his 3rd major is tempered flat by a full fifth of a comma.” If
the ratio of the major third to the octave is | : m, the third will have 382.0
cents, or be 1/5 comma flat, as Smith said. The fifth will then be tempered

by 3/10 comma. Romieu’* barely mentioned 3/10- and 3/11-comma



temperaments, but did not discuss them on the ground that they were too like
temperaments with unity in the numerator. Except for a few references to
Smith and this tuning by m, the 3/10-comma temperament has escaped
further notice (see Table 32).

Table 32. Harrison’s 3/10 - Comma Temperament

21 | a [} 3 2 3 L2 a3 3 a
Names ¢ C* T p™s gb'o g78 g™ 47 g gt ™7 o™0 gb*3 p™% °

Cents 0 69 181 314 382 504 573 69¢ T64 88T 1009 L0786 1200
M.D. 26.2; 8.D, 26.6

Since 3/10 1s about the same as 2/7, the deviation for this temperament is
approximately the same as for Zarlino’s, both being inferior to just
intonation. It has no special features to recommend it, since its one natural
feature, the m ratio, is something to be determined by ear or by logarithms,
and would not make the construction of a monochord any simpler.

After referring to Harrison’s system, as quoted above, Smith continued,
“My third determined by theory, upon the principle of making all the
concords within the extent of every three octaves as equally harmonious as
possible, is tempered flat by one ninth of a comma; or almost one eighth,
when no more concords are taken into the calculation than what are
contained within one octave.” Later he showed that “to have all the concords
in four octaves made equally harmonious,” the thirds will be 1/10 comma
flat.3>

With the third flat by 1/9 comma, the fifth will be tempered by 5/18
comma, a quantity impossible to judge by ear. In the second temperament,
with the third 1/10 comma flat, the fifth will be 11/40 comma flat. The
difference between these values of the fifth is only 1/360 comma! Therefore
the temperaments would not vary for any note by as much as one cent. For
this reason only the first of Smith’s temperaments is shown in Table 33.



Table 33. Smith’s 5/18 - Comma Temperament
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Since 5/18 is also approximately the same as 2/7, Smith’s temperament is
only a little better than Zarlino’s. We have previously indicated that the 50-
division has usually been considered the equivalent of the 2/7-comma
temperament. Smith asserts, however, that his temperament corresponds to
the 50-division, the error of the fifth in the latter being 41/148 comma. He is
entirely correct in his claim.

Smith did not suggest, however, that the octave be divided into fifty
parts—merely that “a system of rational intervals deduced from dividing the
octave into 50 equal parts,... will differ insensibly from the system of equal
harmony.” His desire is more modest—to have at least 21 different pitches in
the octave, properly to differentiate the sharps, naturals, and flats. On the
organ and harpsichord this could be done by adding extra pipes and strings.
Performance would be facilitated by having “seven couples of secondary
notes,” governed by stops, so that the appropriate notes for a particular piece
could be chosen. Of course, upon an instrument with 19 notes to the octave
(the other two would be of little use), Smith’s temperament, like Zarlino’s
and Salinas’, would be far more acceptable than on the ordinary keyboard.
Smith himself considered that ordinary equal temperament “far exceeds”
both the 31- and 50-divisions, because of the cumbersomeness of the latter
systems.

The only other important variety of the meantone temperament was that
practiced by Silbermann and his contemporaries. According to Sorge,

Silbermann tempered his fifths by 1/6 comma.>® Since Sorge himself made
no distinction between the syntonic and ditonic commas, we might divide
either. If we divide the ditonic comma, the deviation is precisely the same as
for the Pythagorean tuning, M.D. 11.7, S.D. 11.8. But, for better comparison
with the other varieties of meantone temperament, let us divide the syntonic
comma. Then the major third is 1/3 comma sharp, and the tritone is pure (see
Table 34).



Table 34. Silbermann’s 1/6 - Comma Temperament
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Romieu’’ adopted the 1/6-comma temperament as his “temperament
anacratique,” showing its correspondence to the 55-division. A generation
after Romieu, Barca called this temperament the “temperamento per comune

opinione perfettisimo,””*® and showed that it could be approximated by
multiplying both terms of the ratio 81:80 by 6 and then tempering the fifth
by the mean ratio 483:482, which gives 241:161 for the tempered fifth. (A
better approximation is 220:147.) From additional references to the 55-
division in Chapter V1, it would appear that this method of tuning was in use
for well over a century. As a system upon which modulations might be made
to any key, it was much better than the 1/4-comma meantone system,
although inferior to most of the irregular systems discussed in Chapter VII.
Romieu mentioned temperaments of 1/7, 1/8, 1/9, and 1/10 commas, but
did not consider them sufficiently important to discuss. The 1/10-comma

temperament was included among Marpurg’s many temperaments.>’
Otherwise none of these temperaments has been advocated by any of our
theorists. They should be presented, however, in order to complete our study
of regular temperaments approaching equal temperament (see Tables 35—
38). The syntonic comma has been divided in each case. With the exception
of some of Marpurg’s symmetrical versions of Neidhardt’s unequal
temperaments, the temperaments shown in Tables 37 and 38 come closer to
equal temperament than any divisions that were not practical approximations
to it.

Table 35. 1/7 - Comma Temperament
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Table 36. 1/8 - Comma Temperament
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Table 37. 1/9 - Comma Temperament
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Table 38. 1/10 - Comma Temperament
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Chapter IV. EQUAL TEMPERAMENT

The first tuning rules that might be interpreted as equal temperament were

given by Giovanni Maria Lanfranco.! As stated, these rules were for
clavichords and organs (Monochordi & Organi), but Lanfranco extended
them also to the common stringed instruments of his time. Thus there is none
of the confusion that arose later when the keyboard instruments were tuned
in one manner, the fretted instruments in another.

Lanfranco’s essential rules concern the tempering of the fifths and the
thirds: the fifths are to be tuned so flat “that the ear is not well pleased with
them,” and the thirds as sharp as can be endured. There seems to be a
distinction here: for a fifth might be tuned only slightly flat and the ear
would not then be wholly pleased with it; but the thirds are to be only a
shade less harsh than those which cannot be endured at all.

Most of Lanfranco’s contemporaries still knew no tuning but the
Pythagorean, with its pure fifths and impossibly sharp thirds. Lanfranco’s
rules seem to represent a temperament of the Pythagorean tuning, rather than
of just intonation. Equal temperament then fits his directions excellently. As
further evidence, Lanfranco divided the notes to be tuned into two classes,

sharps and flats. As with the meantone temperament, the sharps included F*,
C*, and G”, “although most of these are also common to the flat class, if not
in tuning, at least in playing.” But, although the flats proper included only BP
and EP, this class “occasionally needs in playing the black keys F* (GP) and
C* (DP).” As Kinkeldey says, “the enlargement of the major third, the
diminution of the minor third, the equivalence of the notes C* and Db F# and
GP—these are essential departures from his contemporaries.”?

Aurelio Marinati® honored Lanfranco by inserting in his “example of the
tuning of clavichords and organs” a word-for-word account of Lanfranco’s
system, complete even to the title—without, however, giving him credit for it.
Another plagiarist, Cerone, sufficiently appreciated Lanfranco to copy out

his system for the benefit of organ-builders.* At the time when these men
were writing, the meantone temperament was the recognized tuning norm




for keyboard instruments. It is rather surprising that Cerone in particular,
who had presented Zarlino’s 2/7-comma system in detail, did not seem to
realize that there was a conflict between Zarlino’s flat and Lanfranco’s sharp
major thirds.

Lodovico Zacconi® was more astute. He presented no tuning rules of his
own, saying that it is “better that those who wish to know and to see should
look to the source and to the original authors.” For keyboard instruments he
recommended Aron’s meantone temperament. “As for the other instruments,
such as the viole da braccio, viole da gamba, violins, and others, you can
look at the end of Giovanni Maria Lanfranco’s book, which indicates clearly
how each one is to be tuned.”

In Zacconi’s day and long before it, the fretted instruments were said to
have equal semitones. To Zarlino, Salinas, and Galilei this meant equal
temperament, with all semitones equal. To Grammateus and Bermudo, only
ten semitones were equal, the others being smaller; to Artusi, and
presumably also to Bottrigari and Cerone, there were ten equal semitones,
the other two being larger. But, of these three types of temperament—equal,
modified Pythagorean, and modified meantone—only equal temperament had
both flat fifths and sharp thirds in addition to equal semitones. Therefore,
Zacconi, writing only sixty years after Lanfranco, is practically saying that
the latter’s rules represent equal temperament. In view of the excellent
tuning methods of Lanfranco’s immediate predecessors, Grammateus and
Schlick, it is very likely that Lanfranco did intend equal temperament for all
instruments, including clavichords and organs.

Later writers who gave practical tuning rules for equal temperament

were often no more precise than Lanfranco had been. Jean Denis,® for
example, said nothing about the size of the thirds. But all the fifths are to be
lowered a trifle (d’un poinct), “and all the fifths ought to be tempered
equally.” Denis may even have had some variety of meantone temperament

in mind, for he directed that the tuning should begin with E® and end with

G". But if his “toutes” means what it says, his was equal temperament.
Godfrey Keller’s tuning rules for harpsichord or spinet were widely
circulated, having been reprinted in the appendix to William Holder’s
Treatise . . . of Harmony (London, 1731), and in Part VI of Pierre Prelleur’s
long popular Modern Musick-Master.” Although they can refer to nothing
but equal temperament, they are by no means accurate: “Observe all the
Sharp Thirds must be as sharp as the Ear will permit; and all Fifths as flat as

5




the Ear will permit. Now and then by way of Tryal touch Unison, Third,
Fifth, and Eighth; and afterward Unison, Fourth, and Sixth.” It is impossible
for the thirds to be very sharp and the fifths simultaneously very flat; for in
the 1/5-comma variety of meantone temperament, in which the error of the
fifths and the thirds is equal, the error is not large. Keller’s rules would read
better if he had said that the fifths were to be only slightly flat.

Barthold Fritz® gave tuning rules for equal temperament that merited the
approval of Emanuel Bach, to whom he had dedicated his little book. Bach
said that “in my [Fritz’s] few pages everything had been said that was
necessary and possible, and that would satisfy far more needs than the
sundry computations with which many a man has racked his brains; since the
latter method of instruction was only for very few people, but mine was for
everybody, the computers not excepted, because they depend upon the

judgment of the ear as well as the others.”

Fritz’s rules were very simple. After going from F to A by four tempered
fifths, he said, “I now have the already pure F as a major third to this A, and,
by touching the A and by testing it with F, can hear whether it sounds sharp
enough or so much upwards that the beats are about the rapidity of eighth

notes in common time.”!°
Fritz began his tuning in the octave below middle C. From William Braid

White’s table,!! the tempered F - A in this octave will beat about 7 times per
second, or over 400 times in a minute. Even allowing for the somewhat
lower pitch of the eighteenth century, Fritz’s eighth notes would be very fast,
unless by “common time” he meant alla breve.

Mersenne!? also gave a practical tuning hint for equal temperament
when he said, “Certain people believe that they can find the preceding
accord of the equal semitones by beginning ut, re, mi, fa, etc. on each key of
the spinet, or by the number of tremblings or beats which the fifth and other
tempered consonances make: for example, the fifth beats once in each
second when it is tempered as it should be (as much for the organ as for the
spinet); whereas when it is just it does not beat at all.” From White’s table,
Mersenne’s rule would apply best to the fifth D—-A in the octave above
middle C, and approximately to other fifths in that vicinity.

Alexander Ellis’ practical rules for the formation of equal temperament!>
may be paraphrased as follows: If one tunes by upward fifths and downward
fourths within the octave above middle C, each fifth should beat once per
second, and each fourth three times in two seconds. Ellis stated that if this



rule is followed accurately, the error for no pitch will be greater than two
cents. Again using White’s useful table, we find that the mean value of the
beats of the tempered fifths in the C—C octave is 1. 02 and of the tempered
fourths, 1.47, proving that Ellis’ rule is correct.

White himself “lays the bearings” in the F—F octave,! just as Fritz did.
Since the ratio of a tempered fifth is approximately 3:2, one might suppose
that he would advocate beating rates that are 2/3 of Ellis’ values: fourths
once per second, and fifths twice in three seconds. However, he recommends
that the fifths beat three times in five seconds, or 36 times per minute, and
suggests setting a metronome at 72, with the bell ringing at every second
tick. Since, from his own table, the mean value of the beats of his tempered
fifths 1s .68 rather than .60, he would get better results from setting the
metronome at 80.

Bossier’s method!> for achieving equal temperament is reminiscent of
Aron’s method for the meantone tuning. Aron, it may be remembered, first
tuned his major third pure and then tuned equally flat the four fifths that
were used in constructing the major third. Bossler first divided the octave by

ear into three equal parts—C-E-G"-C. Then he tuned a group of four fifths, as
C-G-D-A-E, slightly flat, so that the last would give the sharp major third
already found. The method would be continued until the entire octave was
tuned. Having these first three notes fixed gave him points of reference, so
that he could never go far wrong. But he realized that the human ear is
fallible, for he recommended that the tuner buy “steel forks from Frankfurt
or Leipzig for all twelve notes.”

Geometrical and Mechanical Approximations

One of the famous problems of antiquity was the duplication of the cube.
It had been proved that the construction of the cube root of 2 could not be
accomplished by Euclidean geometry, that is, by compass and ruler. This is
the precise problem involved in the solution of equal temperament by
geometry, if Bossier, for example, had desired to construct a monochord
upon which would be located his C-E-G*-C.

The first sixteenth century writer to suggest a geometrical or mechanical
means of solving equal temperament was Francisco Salinas.!® Let him
explain his method: “We judge this one thing must be observed by makers of
viols, namely, that the octave must be divided into 12 parts equally



proportional, which 12 will be the equal semitones. And since they cannot
accomplish this by the 9th of the 6th book [the mean proportional
construction] or by any other proposition of Euclid, it will be the task to use
the instrument which we said was called the mesolabium, invented (as they
believe) by Archimedes: by which they will be able to obtain aline divided
into as many equal parts as they wish. We have not bothered to append the
rule of its construction here, because mention is made of its principle by
Vitruvius in his 9th book on architecture; from whom and from his
expositors they will be able to obtain the method of constructing it: for it is
to practical men for framing mgqst matters not only useful, but well-nigh
indispensible.”

The mesolabium had been previously advocated by Zarlino for
constructing his 2/7-comma meantone temperament, and later Zarlino was to
follow Salinas’ lead in recommending it for equal temperament. Hutton
defined the word as follows: “Mesolabe, or Mesolabium, a mathematical
instrument invented by the ancients, for finding two mean proportionals
mechanically, which they could not perform geometrically. It consists of
three parallelograms, moving in a groove to certain intersections. Its figure is
described by Eutocius, in his Commentary on Archimedes. See also Pappius,
Lib. 3.717

With the aid of a clear diagram (Figure B) James Gow'® has explained
the operation of the mesolabium as follows: “If AB, GH be the two lines
between which it is required to find two mean proportionals, then slide the
second frame under the first and the third under the second so that AG shall
pass through the points C, E, at which the diameters of the second and third
frames, respectively, cease to be visible. Then CD, EF are the required two
mean proportionals.”

A

C

G
B D F H

Fig. B. The Mesolabium (From James Gow, A _Short History of Greek
Mathematics [1884])



Although Zarlino contended that the mesolabium might be used for
finding any number of means, by increasing the number of parallelograms,
his diagiam is for two means only. Of course for equal temperament or for
the 1/3-comma meantone temperament, two means would suffice. But

Salinas also advocates it for an unlimited number of means, and Rossi would

find the thirty means for Vicentino’s division by its aid. Mersenne,!”

however, in commenting upon Salinas” construction for equal temperament,
said it was incorrect if he intended to use the mesolabium for more than two
means, because the instrument mentioned by Vitruvius “is of no use except
for finding two means between two given lines.” We shall not attempt to
pass judgment upon these conflicting opinions, but it would seem that the
difficulty of the process would be increased greatly with an increasing
number of means.

Zarlino?® has given three methods by which “to divide the octave
directly into 12 equal and proportional parts or semitones.” The first used the
mesolabium, as already mentioned. The second used the method of Philo of
Bysantium (second century, B.C.), which consisted of a circle and a variable
secant through a point on its circumference. The third i1s a variation of the
first, in that the string-length for one note is found by the mesolabium, and
then the lengths for the other notes are found by similar proportions.

Mersenne,”! too, has contributed non-Euclidean methods for finding two
geometric means. The first, ascribed to Molthée, used straight lines only, in
the form of intersecting triangles. The other method (Figure C) was

furnished by Roberval and used a parabola and a circle.”> Kircher??
combined the Euclidean method for finding one mean proportional with a
mechanical method for finding two means. This latter is by still another
method, consisting of two lines at right angles and two sliding L-shaped

pieces, like carpenters’ squares (Figure D). According to Rossi,>* Kircher’s
is the method of Nicomedes, and Rossi considered it “more expeditious”

than others that have been mentioned. Marpurg? ascribed Kircher’s method
to Plato, and added methods by Hero and by Newton, together with
Descartes” method for finding any number of mean proportionals. Thus we
have more than half a dozen geometrical and mechanical methods, proposed
particularly for constructing a monochord in equal temperament.



Fig. C. Roberval’s Method for Finding Two Geometric Mean Proportionals
(From Mersenne’s Harmonie universelle) Reproduced by courtesy of the
Library of Congress

Fig. D. Nicomedes’ Method for Finding Two Geometric Mean Proportionals
(From Kircher’s Musurgia universalis) Reproduced by courtesy of the
Library of Congress

Since these mechanical methods for finding two mean proportionals are
rather awkward, the attempt has been made to use a satisfactory ratio for the

major third or minor sixth, so that the remainder of the division could be

made by the Euclidean construction for finding a single mean. Mersenne”®



has given two such methods. In the second, which he said is “the easiest of
all possible ways,” the just value of the minor sixth (8:5) is used. By mean
proportionals, eight equal semitones are found between the fundamental and
the minor sixth, and then, in like manner, the remaining four semitones
between the minor sixth and the octave.

As can be seen from Table 39, this method is not extremely close to
correct equal temperament, because the just value of the minor sixth is about
14 cents higher than its value in the equal division. One might have expected
the usually astute Mersenne to have chosen a tempered value in the first
place. The equally tempered minor sixth is very nearly 100:63, as can be
readily seen in Boulliau’s table given by Mersenne, where it bears exactly
this value. If this fraction is too difficult to work with, 27:17 will serve
almost as well, and 19:12 comes rather close also. Any of these other ratios
would have given a more satisfactory monochord than his. In Table 40,
19:12 is used for the minor sixth.

Table 39. Mersenne’s Second Geometrical Approximation

Names C x D x E F X G X A X B c
Cents 0 102 203 305 407 508 610 712 £14 910 1007 1103 1200
M.D. 2.3; 8.D. 2.5

Table 40. Geometrical Approximation (19:12 for Minor Sixth)

Names C x D x E F X G
Cents 0 995 198.9 2B8B.4 397.8 497.3 509B.7 696.2
Names A X B C

Cents 785.6 896.7 987.8 109B8.9 1200.0

M.D. .78; S.D. .78

But we cannot be supercilious regarding Mersenne’s other practical
method for obtaining two mean proportionals. Mersenne himself correctly
said, “It serves for finding the mechanical duplication of the cube, to about
1/329 part.”?’ By the familiar Euclidean method he found the mean

proportional between a line and its double, subtracted the original line from
the mean, and then subtracted this difference from the doubled line. The



length thus found was the larger of the desired means—that is, the string-
length for the major third. In numbers, this ratio is (3 = 4/2): 2, or .79289,
which represents 401.8 cents. The result is shown in Table 41, the remaining
values being found by mean proportionals as in Mersenne’s second
approximation. This is an extremely fine geometrical way to approximate
equal temperament.

Table 41. Mersenne’s First Geometrical Approximation

Names C x D X E F X G
Cents C 1004 2009 3013 4018 5016 6013 701.1
Names X A x B C

Cents 800.9 000.6 1000.4 1100.2 1200.0

M.D. .30; S.D. .32

Table 42. H6 Tchhéng-thyén’s Approximation

Lengths 900 849 802 758 715 677 638 601 570 536 509.5 479 450

Names C C* D Df E E* F¥ G ¢* Ao A B

Cents 0 101 200 207 308 493 596 689 791 B97T 985 1091 1200
M.D. 4.8; S.D.5.8

Numerical Approximations

The earliest numerical approximation for equal temperament comes from
China. About 400 A.D., H6 Tchhéng-thyén gave three monochords for the
chromatic octave, with identical ratios, but with the fundamental taken as

9.00, 81.00, and 100.0 respectively.?® (String-lengths are given for the first
of these tables only, since they illustrate the manner of its formation better
than the other two.)

Table 42 shows a remarkable temperament for the time when it was
constructed, comparable to the brilliant solution of the problem of equal
temperament by Prince Tsai-yli over a thousand years later. At the time of
Tchhé-thyen the Pythagorean tuning was the accepted system in China. If we
assume the calculation to begin with the higher C at 450 and proceed in strict



Pythagorean manner to B in the lower octave, the B” will be at 888 instead
of 900. This 1s 12 units too short. Let us, therefore, add 1 unit to 600, the
value for G; 2 units to 800, the value for D; 3 units to 533, the value for A;
and so forth, along a sequence of fifths, until we reach the correct value for
C at 900. Tchhéng-thyén’s figures agree precisely with our hypothesis.

A linear correction, such as Tchhéng-thy&n made, often provides a good
approximation, as we shall see elsewhere in this chapter. The difficulty with
his correction is that if he had started with the lower C and had continued
until he had reached the higher B”, the latter would have been only 6 units

too short instead of 12. By adding 10 parts for A”, 8 for G, etc., he obtained
pitches that were much too low. If he had added 12 parts to 444 for the
higher B*, the corrected length, 456, would have been at 1177, instead of
1200 cents, 23 cents flat! Let us consider the effectof adding precisely half
the correction for each note. This would work well for the odd semitones, C
D E F* G* A” B”, as might have been expected; but the lower three even
semitones, C* D* E”, are then as sharp as the higher odd semitones were flat
before! We shall have better success if we continue the series of whole tones
from G to Fx, the latter at 296 needing a correction of 4.2 to make a perfect
octave to G, 600.5. Then the intermediate notes can be given a proportional
linear correction, which would be doubled for the three notes C* D* E* when
transposed to the lower octave. This improved temperament is shown in

Table 43. The greatest error is at C*.

Table 43. H6 Tchhéng-thyén’s Temperament, Improved

Lengths 200 8466 BO1 764.8 L3 763 B35 600.5

Names & x D x E F X G
Cents 0 106 202 308 403 503 604 T01
Lengths 566 034.1 504.5 4757 450

Names % A X B C

Cents 803 Bo3 1004 1101 1200

M.D. 2.2; S.D. 2.7

The arithmetical division of the 9:8 tone into 17:16 and 18:17 semitones
was known to all sixteenth century writers through Ptolemy’s demonstration



that Aristoxenus could not have obtained equal semitones in this way. But
Cardano (1501-76) may have been referringto some practical use of the
18:17 semitone when he wrote: “And there is another division of the tone
into semitones, which is varied by putting the tone between 18 and 16; the
middle voice is 17; the major semitone is between 17 and 16, but the minor
between 18 and 17, the difference of which is 1/288. It is surprising how the
minor semitone should be introduced so pleasingly in concerted music, but

the major semitone never.”%’

The simplest way to construct a monochord in equal temperament is to
choose a correct ratio for the semitone and then apply it twelve times, a
construction that can be performed very easily by similar proportion.
Vincenzo Galilei*? must be given the credit for explaining a practical, but
highly effective, method of this type. For placing the frets on the lute he used
the ratio 18:17 for the semitone, saying that the twelfth fret would be at the
midpoint of the string. He went on to say that no other fraction would serve;
for 17:16, etc., would give too few frets, and 19:18, etc., too many. Since
18:17 represents 99 cents, 17:16, 105 cents, and 19:18,94 cents, Galilei was
correct in his contention. But he did not give a mathematical demonstration
of his method. It remained for him a proof by intuition. The string-lengths in

Table 44 were calculated by Kepler.?!

Table 44. Galilei’s Approximation

Lengths 100000 94444 89197  B4242  TO562  T5142 70967

Names C b D X E F X
Cents 0 99 198 297 386 495 594
Lengths 67024 63301 59784 56463 53326 50000

Names G X A X B C

Cents 693 792 891 980 1089 1200

M.D. 1.8; S.D. 3.3

Mersenne? testified that Galilei’s method was favored by “many makers
of instruments.” The Portugese writer Domingos de S. Jose Varella’? gave a
“way to divide the fingerboards of viols and guitars.” This is precisely
Galile1’s method, and Varella told how the construction could be continued



by similar proportion after thefirst 18:17 semitone had beenformed.

Likewise Delezenne3* showed that 18:17 is very near the value for the
correct equal semitone, and gave a geometrical construction for it used by
Delannoy, the instrument maker, in placing the frets upon his guitars.

Two other early nineteenth century references to what Garnault®> called
the “secret compass” of the makers of fretted instruments were given in his
tiny and not very trustworthy monograph on temperament. The first was
from the Robet-Maugin Manuel du Luthier (1834), which stated that if the
string is 2 feet in length, the first semitone will be at a distance of 16 lines
from the end; this represents 16/2x12x12 = 1/18 the length of the string, thus
giving 18:17 for the ratio of each semitone.

Garnault’s second reference was to the Bernard Romberg ’cello method

(1839),3¢ which he said had been adopted by Cherubini for use in the Paris
Conservatoire. Romberg’s directions were much the same as those given
previously. Although Garnault does not mention this, Romberg added that
the directions given were for equal temperament, but the more advanced
player would often make the sharped notes sharper and the flatted notes
flatter than these pitches—another confirmation of the quasi-Pythagorean
tuning of instruments of the violin family.

These references to the 18:17 semitone cover two and a half centuries. It
is probable that they could be brought much nearer our own times if the
makers of fretted instruments were given a chance to express themselves.
We must accept Galilei’s method, therefore, as representing the
contemporary practice. A player on a lute was not going to bother with the
mesolabium or with a monochord on which were numbers representing the
successive powers of the 12th root of 2. But he could place his frets by a
simple numerical ratio such as 18:17, and we are glad that the frets thus
placed served their purpose so well.

Critics of Galilei were not slow to show that the 12th fret would not
coincide precisely with the midpoint of the string. Passing by the
inconveniently large numbers of Zarlino’s ratios, we come to Kepler’s result:
if the entire string is 100,000 units in length, Galilei’s 12th fret will be at
50,363 instead of 50,000. As we have already stated, his semitone has only
99 cents, so that the octave contains 1188 instead of 1200.

There are various ways of correcting the octave distortion arising from
the use of the 18:17 semitone. An obvious way is suggested by Mersenne’s
approximations: form only 4 semitones with the 18:17 ratio; then apply



Mersenne’s mean-proportional method to the remaining 8 semitones. The
monochord thus constructed (Table 45) is as good as Mersenne’s first
method.

Table 45. Approximation a la Galilei and Mersenne

Names C x D X E F x G
Cents 0 99 198 2917 396 496.5 397 697.5
Names X A X B B

Cents 798 898.5 999 10885 1200
M.D. .67; £.D..7

An even simpler correction uses linear divisions only: since the length
for the 12th fret is 363 units too great, divide 363 into 12 equal parts and
subtract 30 units for the first fret, 61 for the second, 91 for the third, etc. As
is always the case with this type of correction, there is a slight bulge in the
middle of the octave, but the largest error is only 1.8 cents.

The correction shown in Table 46 lends itself well to numerical
computation, since the fundamental and its octave are in round numbers. But
in practice, with a geometrical, not a numerical, construction, the following
would be simpler and is even a trifle better: 1f 50,363 be considered the real
middle of the string, the octave will be perfect. To make it the middle,
shorten the entire string by twice the difference between 50,000 and 50,363,
that is, by 726. Then everyone of the lengths as given by Kepler will be
diminished by 726, and the 12th fret, 49,637, will be the exact middle of the
string, 99,274. Note again the slight bulge in the middle of the division
(Table 47), with the greatest distortion 1.0 cent.



Table 46. Galilei’s Temperament, with Linear Correction, No. 1

Lengths 100000 04414 89136  B4161 79441 74991 70785

Names C X D X E F X
Cents 0 99.5 189.1 298.6 398.5 498.3 098.2
Lengths 66812 630589 59512 56160 52993 50000

Names G X A X B C

Cents 698.3 T798.4 898.5 998.¢ 1099.4 1200

M.D. .26; 8.D. .31

Table 47. Galilei’s Temperament, with Linear Correction, No. 2

Lengths 100000 99274 88471 B3516  T883€  T4416 70241

Names c X D X E F X
Cenis 0 88.7 199 4 288.3 399.1 499.0 589.0
Lengths 66208 62576 50068 55737 52600 49637

Names G X A X B C

Cents 699.0 T949.0 899 .2 889.3 1099.7 1200

M.D. .17; S.D. .21

The improvements upon Galilei’s tuning shown in Tables 46 and 47
could have been made by practical tuners. They are better divisions than
many of the numerical expressions of equal temperament which will be
shown later. They are better also than the temperament our contemporary
tuners give our own pianos and organs. So there is nothing more that needs
to be said, as far as practice is concerned. There are, however, several other
and more subtle ways of improving Galilei’s tuning which we should like to
mention. These are of speculative interest solely.



Let us return to the false octave generated by the 18:17 semitone.
Mersenne suggested that “if the makers should increase slightly each 18:17
interval, they would arrive at the justness of the octave.” The 11th fret is at
53326, leaving a ratio of 53326:50000 for the remaining semitone. This, as
its cents value indicates (111 cents), is about the size of the just 16:15
semitone. Let us pretend that the final digit in the antecedent is 5, and reduce
the ratio to 2133:2000. Now let us average this semitone with the eleven
18:17 semitones, using the arithmetical division generally followed by
sixteenth century writers. Our desired semitone 1s
2000/2133 + 187/18 = 48319 1 yocimal form this is 9438779, as

12 51192

compared with the true equal semitone, .9438743. The successive powers of
this decimal would deviate more and more from those of the 12th root of 2,
but even then the octave would be only .1 cent flat.

Another way of correcting Galilei’s tuning is based upon the fact that his
octave would be 12 cents, that is, half a Pythagorean comma, flat. A
somewhat crude, but practical, manner of adjusting the octave would be to
form four 18:17 semitones, from C to E, then take the next five notes, F
through A, as perfect fourths to the first five, and then the two remaining
notes, BP and B, as perfect fourths to F and F*. A satisfactory monochord is
shown in Table 48. Note particularly how much smaller its standard
deviation is than that of Galilei’s actual tuning.

As an approach to a finer division using Pythagorean intervals, let us

turn to Pablo Nassarre.3’

Table 48. Galilei’s Temperament, Combined with Pythagorean

Names c X D X E F X G
Cents 0 99 196 2917 396 498 obT 696
Names X A X B C

Cents 195 894 996 1095 1200

M.D. 1.5: 8.D. 1.8

He had discussed equal semitones upon fretted instruments,

using much the same language as Praetorius,® to the effect that a 16:15
diatonic semitone contains 5 commas and a 25:24 chromatic semitone 4



commas, but that these semitones have the peculiarity that they are all equal,
containing 4 1/2 commas. They are obtained by a linear division of the 9:8
tone into 18:17 and 17:16 semitones. To place the frets, three or four 9:8
tones are constructed, and the distance between each pair of frets divided
equally to form the semitones. Of course an arithmetical division of tones
will not form precisely equal semitones. Furthermore, there is a fairly large
distortion for the last semitone if the process is carried out through twelve
semitones. Of course, as with Galilei’s method, no single string would have
had twelve frets. In Table 49 the division is made for the entire octave. The

length for B was taken as the arithmetical mean between A” and the middle
of the string.

Table 49. Nassarre’s Equal Semitones

Names ce X D® x E° (F) Ffe (G)
Cents 0 99 204 303 408 507 612 711
Names G#0  (A) AT (B) c*

Cents 816 915 1020 1104 1200
M.D.4.2; SD. 5.4

If Nassarre had divided each 9:8 tone into precisely equal semitones by a
mean proportional, his errors would have been smaller.

Table 50. Nassarre’s Temperament Idealized

Lengths 100000 94281 86889 83805 179012 74494 70233

Names [ X D° 4 E° (F) F#o
Cents 0 102 204 306 108 510 612
Lengths €6216 62429 08859 55403 52319 50000

Names (G) c¥ (A) A® (B) c®

Cents 14 816 918 1020 1110 1200

M.D. 3.T; S.D. 6.7



It is not particularly difficult to set down this temperament in

figures, since the square root need be performed only for C*, after which a
second series of 9:8 tones can be formed, starting with this note. If B is taken
as the geometric mean between A* and C, its length is 52675, or 1110 cents,
making the mean deviation 3.3, and the standard deviation 4.5. However, for
the sake of an approximation to be made in Table 50, B is taken as the
geometric mean between A" and B* with a relatively high standard
deviation.

If we now compare the cents values of the temperament shown in Table
50 with those of Galilei’s tuning, we shall find that the error of the former is
opposite to and twice as great as that of the latter. Therefore, for every pair
of string-lengths, subtract the smaller (Nassarre) from the larger (Galilei),
and then subtract 1/3 the difference from the larger number. The excellent
monochord shown in Table 51 results.

Table 51. Temperament a la Galilei and Nassarre

Lengths 100000 94390 89094 84006 79379 74026 70722

Names C x D X E F X
Cents 0 99.9 199.9 299.9 399.8 499.8 999.7
Lengths 66755 63010 59476 56140 52990 50000

Names G x A X B C

Cents 699.7 790.7 809.6 999 .6 1099.6 1200

M.D. .07; S.D. .13

If the idealized Nassarre temperament had been extended one more
semitone, the string-length for the octave would have been 49,328. When
this number is adjusted with the 50,363 of Galilei’s tuning, the octave proper
to the above temperament becomes 50,018 or 1199.5 cents. Let us now make
the same type of octave adjustment as with the original Galilei tuning, by
subtracting 18 from the 12th semitone, and 1 or 2 less for each succeeding
semitone. Then no length varies by more than 2 or 3 units from the correct
value, that 1s, the maximum variation is less than .1 cent.

This procedure sounds somewhat complicated. It is not necessary to go
through the entire process three times, as shown above, in order to obtain the



final monochord. The ratio for the semitone  will be

17/9 E 242 /3 = 172; ﬁJE_' Including the octave correction, the

formula  for the  string-length of the nth semitone is:

100,000 (17 ;76"'?)' 3(n2-1}_ Perhaps it would be simpler after all to

stick to cube roots, especially when fortified with a table of logarithms!

Johann Philipp Kirnberger,> however, used a very roundabout method
of attaining equal temperament, believing it to be simpler in practice than
tuning by beating fifths. He showed that the ratio 10935:8192 closely
approaches the value of the fourth used in equal temperament. In practice
this value would be obtained by tuning upward seven pure fifths and then a
major third. In other words, if C° is the lower note, g#~1 is regarded to be
the equivalent of F"’ﬁ, the tempered fourth. The basis for this equivalence

lies in the fact that the schisma, the difference between the syntonic and the
ditonic commas, is almost exactly 1/12 ditonic comma, the amount by which
the fourth must be tempered. The ratio given above becomes, in decimal
form, .7491541..., whereas the true tempered value is .7491535 ... . The
result is an extremely close approximation.

Kirnberger spoke of Euler’s approval of his method, and of Sulzer’s and

Lambert’s publication of it. Marpurg®® showed that Lambert’s method, when
applied to an entire octave, will differ for no note by more than .00001. He
praised it as a method that needs no monochord, and believed that the tuning
of the just intervals used in it could be made more quickly and accurately
than the estimation by ear of the tempering needed for the fourth or the fifth.
However, the tuning of a pure major third is so difficult that Alexander Ellis
thought that better thirds can be obtained from four beating fifths than by
tuning the thirds directly. If this be true, a type of tuning in which the
essential feature is a pure major third could not be very accurate, without
considering the labor of tuning eight pure intervals in order to have only one
tempered interval!

Kirnberger’s approximation for equal temperament was next heard of in

England, where John Farey*! seems to have discovered it independently. In

Dr. Rees’s New Cyclopedia** we are shown how Farey’s method “differs
only in an insensible degree” from correct equal temperament.




Among the monochords shown by Marpurgis one by Daniel P. Strihle,*?
allegedly in equal temperament, but actually unequal, as can be seen in Table
52. This is a geometric construction of a curious sort, for which Jacob
Faggot computed the string-lengths by trigonometry (see Figure E). In brief,
it went like this: upon the line QR, 12 units in length, erect an isosceles
triangle, QOR, its equal legs being 24 units in length. Join O to the eleven
points of division in the base. On QO locate P, 7 units from Q, and draw RP,
extending it its own length to M. Then if RM represents the fundamental
pitch and PM its octave, the points of intersection of RP with the 11 rays
from O will be the 11 semitones within the octave.

Table 52. Faggot’s Figures for Strihle’s Temperament

Lengths 10000 0370 BBl11 8290 7800 7365 €953

Names C X D x E F X
Cents 0 111 219 325 428 029 629
Lengths 6570 6213 5881 5568 5274 5000

Names G X A X B C

Cents 727 B24 810 1014 1108 1200

M.D. 4.8; 8.D. 5.7
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Fig. E. Strahle’s Geometrical Approximation for Equal Temperament
Reproduced by courtesy of the Library of the University of Michigan

It is obvious from the construction that the distance between two
consecutive points of division will be greater near R than near P, and hence
that, superficially at least, the division will resemble a series of proportional
lines, as in true equal temperament. But, as Table 52 shows, there is a large
bulge in the middle of the octave, and F*, which should be 500042 = 7071
1s distorted very greatly. Now, if QR is given, the points of division are
functions of QO (or RO), but they are also functions of QP. It is primarily
the size of the angle QRP that determines the ratios of the string-lengths.
Strahle’s choice of 7 units for QP was unfortunate, or the distortion would
not have been so great.

To reduce the errors in this construction, let us attempt to find a value for

the angle QRP for which the length for F* is correct, ‘JEIZ'M Let A be the

midpoint of QR and B the point where OA cuts RM; so that BM is the
length for F#. Then

1. RB = {2BP = {2RP
1442

2. OQR = cos~! 1/4 = 750 31 .



By the sine law and from 1. and 2.,

3. sin RPQ 12, or sin RPQ 12
sin PQR_ RP  AI5/24 RB/ + 42

4, cos QRP = 6/RB.
From 3. and 4.,
5. sin RPQ = 430 cos QRP _ 1.1344 cos QRP
2(1+4J2) -
From 2.,
6. QRP + RPQ = 1040 29',

As an approximate solution to 5. and 6.,
1. QRP = 332 36' and RPQ = 700 53'.

From 7., PQ = 7.028. But this is almost exactly Strihle’s figure! A check
reveals that Faggot made a serious error in computing the angles QRP and
RPQ); so that his value for PQ was actually 8.605 rather than 7. Table 53
gives the correct figures for Strahle’s temperament.

Table 53. Correct Figures for Strdhle’s Temperament

Lengths 100000 0432 8890 8400 7031 7400 073

Names & x D X E F x
Cents 0 101 202 302 401 200 600
Lengths 6676 6308 ath b 2621 5303 2000

Names G x A X B C

Cents €09 198 807 297 1098 1200

M.D. .83; S.D. 1.00

It is, therefore, possible to achieve superfine results by following a
method essentially the same as Strdhle’s. Although unaware of the



possibilities in Strihle’s method, Marpurg has collected many unusual and

interesting temperaments by other men.** Represented two monochords by
Schréter, both of which are excellent approximations to equal temperament
constructed from tabular differences. In the first (Table 54), Schroter
anchored his column of differences upon the notes of the just minor triad, as

C E® G C, with ratio 6:5:4:3. The intermediate notes were obtained by
arithmetical divisions. This column of differences is worth showing as a
monochord in its own right, for the method of construction resembles that of
Ganassi and Reinhard. The mean deviation is about the same as for the
Pythagorean timing, but the standard deviation is larger because the
semitone B—C, with ratio 28:27, 1s much smaller than the others.

Table 54. Schréter’s Column of Differences, No. 1

Lengths 54 51 48 45 42 40 38 36
Names £ X D X E F X G
Cents 0 499 204 317 435 520 608 102
Lengths 34 32 30 28 21

Names X A X B C

Cents 604 906 1018 1137 1200
M.D. 11.3; 8.D. 15.3

In Schroter’s monochord proper (Table 55) the upper fundamental (451)
1s the sum of all the differences in the above table, save the first number to
the left (54). Thus the lower fundamental (902) will be a true octave. This
monochord is a highly satisfactory approximation to equal temperament.



Lengths
Names
Cents
Lengths
Names

Cents

Table 55. Schroter’s Approximation, No. 1

902  B51
C X
0 100.7
602 568
G X
700.0 800.7

803 768 716
D X E
201.3 301 .1 399 9
536 506 48
A X E
901.1 10008 1099 4

M.D. .52; 5.D. .59

€76
F

499 .3

451
C
1200

638
X
599.7

Schréter’s column of differences for the second approximation (Table
56), while also containing arithmetical divisions, is constructed more
carefully than the first. The minor thirds D-F and A—C have the unusual
ratio 19:16 or 297 cents. All the notes in the tetrachord G—C are pure fifths
above the notes inthetetrachord C—F. Here the deviation is about the same as
in Grammateus’ tuning, thus ranking among the best of the irregular

systems.45

Lengths
Names
Cents
Lengths
Names
Cents

Table 56. Schréter’s Column of Differences, No. 2

384 363
C X
0 97
228 216
A X
903 996

342 324 306 288
D X E F
201 294 393 498
204 192
B C
1095 1200

M.D. 3.8, S.D. 4.3

272
b
287

256
G
102

242

x

7898

Schréter’s second approximation (Table 57) is constructed from the
above column of differences in the same manner as was his first. Its
deviations, like those of the column of differences upon which it was based,
are about 1/3 as large as those of the first monochord.



Table 57. Schroter’s Approximation, No. 2

Lengths €850 6466 €103 9761 54317 a131 4843
Names C X D X E ¥ X
Cents 0 99.9 199.9 299.7 400.0 500 2 600.3
Lengths 4571 4315 4073 3845 3629 3425

Names G X A X B C

Cents 700.3 800.1 ©00.0 000.7 10009 1200
M.D. .1%; S.D. .18

Schréter’s success in building up a monochord by using well-chosen
tabular differences suggests that the same method be applied to Ganassi’s

tuning, which is rather similar to his first column of differences.*® The sum
of the twelve numbers of Ganassi’s monochord is 805, which is chosen,
therefore, for the higher fundamental. As might have been expected, the
monochord (Table 58) is very good.

Table 58. Approximation Based on Ganassi’s Monochord

Lengths 1610 1520 1435 1355 1279 1207 1139
Names C X D X E F X
Cents 0 99.6 199.3 298 6 J98.5 498 .8 209.2
Lengths 1075 1015 958 904 B53 805

Names G X A X B Cc

Cents 99.3 798.8 898.8 999.3 1099.9 1200
M.D. 42; S.D. .51



Table 59. Monochord from Difference Column, No. 1

Lengths 24 23 22 21 20 19 18 17 16
Names C X D X E F X G X
Cents 0 14 151 232 316 406 498 59T 702
Lengths 15 14 13 12

Names A X B C

Cents 815 933 1082 1200
M.D. 18.2; SD. 19.7

These rather amusing improvements in poor or fair tuning systems
suggest that the method be really put to the test by choosing for the original
monochord an entirely unsatisfactory tuning. Accordingly, the thirteen
numbers from 12 through 24 were chosen (Table 59). This is so perverted a
tuning system that the major third (E), the fourth (F), and the fifth (G) are
precisely a semitone flat according to just intonation. However, a benighted
anonymous writer in the Mercure de France in 1771 declared that if the
entire string were divided into 24 parts, the numbers 12 through 24 would

give all the semitones.*’” Thanks to the regularity of its construction, the
deviation of this system ranks it somewhere near the meantone tuning!

In the next monochord (Table 60) the deviation is of the same class as
that of Galilei’s tuning. Its higher fundamental, 210, is the sum of the
numbers 12 to 23 inclusive.

Table 60. Monochord from Difference Column, No. 2

Lengths 4120 <97 375 354 334 315 297
Names C X D X E F X
Cents 0 97.5 196.2 206.0 397.7 498.1 099.9
Lengths 280 264 249 235 222 210

Names G X A X B &

Cents T02.0 803.9 905.2 1005 .4 1103 9 1200

MD.1§ SD.19



For our third monochord (Table 61) we use the lengths of Table 60 as
differences. Here the deviation is about the same as in Schroter’s second
approximation.

In the fourth and last approximation (Table 62) the errors have become
too small to be recorded correctly when five-place logarithms are used.
Apparently, however, the deviation is again about 1/10 that of the previous
monochord.

Table 61. Monochord from Difference Column, No. 3

Lengths 7064 €667 6282 5938 o6L4 5289 4992

Names C X D X E F X
Cents 0 100.1 200.2 300.€ 400.¢ 501.0 601.1
Lengths 4712 4448 4199 3964 3742 J532

Names & X A X B C

Cents 701.0 800.9 900.6 1000.3 1100.1 1200

M.D. .18; §.D. .21

Table 62. Monochord from Difference Column, No. 4

Lengths 118768 112091 105799 99861 94257 88968 83976

Names c X D x E F X
Cents 0 100 200 300 400 a00 600
Lengths 79264 74816 10617 66653 62911 59379

Names G X A X B C

Cents 700 800 900 1000 1100 1200

Objection may be made to Schréter’s approximations, and to ours as
well, on the ground that the fundamentals are not round numbers such as
most of the theorists used for the representation of equal temperament. Let
us see whether we can supply this lack. In our third monochord (Table 61)

the length for F* is 4992. Let this be our higher fundamental. Add 8 to it, and
16 to its double, the lower fundamental. We could then make an arithmetical
division to correct the intermediate numbers. It is little more trouble,



however, to take the two left-hand digits of the numbers in this same
monochord, starting with the value for B®, 40. Multiply these and those for

B, 37, by .4, as 16.0, 14.8, and all the pairs of digits to the left of B® by .2.
Add these numbers to the appropriate numbers in Monochord No. 3, and we
have a corrected monochord, in which the maximum error is 4 units, or

about 1 cent (see Table 63). Deviation is as in the original Monochord No. 3
(Table 61).

Table 63. Monochord No. 3, Adjusted

Lengths 10000 0439 8010 B411 7940 7496 7075

Names C x D x E F x
Lengths 6673 6302 5947 o613 9297 5000
Names G X A x B C

Fortunately, it is possible to make a similar adjustment of our five-digit
monochord, No. 4 (Table 62). Here we shall take as our lower fundamental
the length for EP, 99861. We need 139 to make a round number. This is
about twice the length for G in Monochord No. 2. So we divide the numbers
in the second monochord by 2 or by 4, and add to the appropriate numbers in
Monochord No. 4. The maximum error is 6 units, or about 1/6 cent.

A very useful approximation for equal temperament is to express all its

irrational ratios as comparatively small fractions. Alexander Ellis*® has made
a table of about 150 intervals within the octave, which he has represented by
logarithms, cents, and ratios, actual or approximate. Since all the intervals of
equal temperament are contained in this table, it is easy to list them
separately, as in Table 65.

Table 64.Monochord No. 4, Adjusted

Lengths 100,000 04,388 89,092 84,093 179,375 74,921 70,716
Names & X D x E F x
Lengths 66,747 62,099 59,462 56,124 52,974 50,000

Names G X A X B c



Table 65. Ellis’ Fractional Approximations

Ratios 1 89:84 449:400 44:37 63:50 303:227 140:90 435:289

Names C X D X E F X G
Ratios 100:63 37:22 098:55 168:B9 2
Names X A X B C

Charles Williamson*® has given the material in Table 65, wrongly
ascribing it to Helmholtz rather than to Ellis. By continued fractions he
himself found that the majority of Ellis’ ratios were correct. He objected to
the ratio for the major second (449:400), stating that this interval can be
represented more accurately as the inversion of a minor seventh. The ratios
for the fourth (303:227)and fifth (433:289) he thought were not sufficiently
close either, and should likewise be paired. Ellis’ ratio for the tritone
(140:99) was good, but Williamson preferred to use the ratio for its inversion
(99:70), which is no better.

Williamson remarked that his ratio for the tone (55:49) occurs in Cahill’s
patent for the Telharmonium, and for the tritone (99:70) in Laurens
Hammond’s patent for the Hammond Electric Organ. He had not previously
run across 295:221 or 442:295. 1t is interesting to note that here, as in many

other instances, Pere Mersenne®® has anticipated the modern students of
temperament. Mersenne stated that the minor third of equal temperament is
approximately 6/5 x 112/113 = 672/565. Convergents to this ratio are 44:37
and 157:132, the first of these occurring in both tables above. Mersenne’s
ratio for the major third was 5/4 x 127/126 = 635/504, convergents to which
are 63:50 (as above) and 286:227. For the perfect fifth he gave the ratio 32 x
886/887 = 1329/887, the convergent to which is 442:295, used by
Williamson.

Williamson’s reference to Hammond’s patent®! suggests that the latter’s
ratios be examined in their entirety. (It must be remembered that these ratios
are based on the practical consideration of cutting teeth on gears.) The
difficulty is that, although it is easy enough to reduce Hammond’s
frequencies to ratios with no more than two digits in numerator and
denominator, no one note appears as unity. (The ratios times 320 are the
frequencies from middle C to its octave.) We cannot well compare this with
Table 65. If either F or A, which have the simplest ratios in Table 66, is
given the value of 1, more than half of the ratios will have three digits.



Hence the composite table, Table 67, with decimal equivalents, gives a better
idea of how the three systems compare.

Table 66. Hammond’s Fractional Approximations

Ratios 85:104 71:82 67:73 36:36  66:67 12:11 37:32

Names C x D = E F b
Ratios 49:40 48:37 11:8 67:46 54:35 85.52
Names G x A x B C

Table 67. Comparison of Three Approximations

Ellis Williamson Hammond Equal Temperament
C 200000 200000 200000 200000
B 188652 186652 188697 188775
X 178182 178182 178182 176180
A 168182 168182 168182 168179
X 158730 158730 158677 158740
G 143827 149831 149796 149831
X 141414 141429 141414 141421
F 133480 133484 135499 133484
E 126000 126000 125842 1259492
x 118010 118919 118881 118921
D 112250 112245 112207 112246
X 105952 105952 105928 105946
C 100000 100000 100000 100000

Hammond has utilized some of the same ratios as Ellis and Williamson.
His tone G—A is 55:49; his minor thirds F-A® and F*—A are 44:37; his major
third EP—G is 63:50; his tritones E°~A and F-B are 99:70. He had another
major third (B®-D) with small ratio, 73:46, but this is a poorer
approximation than 63:50. Note that many of Hammond’s ratios are related
in pairs, but not in the same way as Williamson’s. The product of the ratios
for F* and G”, F and A, E and B®, and B and D* is equal to 3:2. C and D are
not so related. Of course the axis G is approximately the square root of 3:2,
and C¥, the other axis, the square root of 3:4.

Let us compare these three approximations with the true values for equal
temperament to six places (see Table 67). For Ellis and Williamson these are



the decimal equivalents of the fractions as given. For Hammond the note A
was taken as the fundamental, and his frequencies as given in the patent have
been divided by 1.1.

In our absorption with quasi—equal temperaments that excel many
presumably correct versions, we should not neglect the pioneers who first set

down in figures the monochords constructed upon the 12th root of 2. The

first European known to have formed such a monochord is Simon Stevin,>?

about 1596, who said that since there are twelve proportional semitones in
the octave, the problem is to “find 11 mean proportional parts between 2 and
1, which can be learned through the 45th proposition of my French
arithmetic.” There he had explained that mean proportionals can be found by
extracting roots of the product of the extremes. He now applied this
principle, by representing each semitone as the 12th root of some power of 2
(see Table 68).

Table 68. Stevin’s Monochord, No. 1

Lengths 10000 9440 8011 8408 1937 7493  T0T1

Names C X D X E F X
Cents 0 08.7 199.6 300.2 400.0 499.6 600.0
Lengths 6675 6301 5945 5612 5298 5000

Names G X A X B C

Cents 699.8 799.0 900.3 1000.1 1099.7 1200

In his actual calculations Stevin first computed notes 7,4, and 5, that is,

F# E® and E. These involve no more difficult roots than cubic and quartic.
There is now sufficient material to compute the remaining notes by
proportion, “the rule of three.” Thus the fifth note (7937), divided by the
fourth (8408), gives the second (5440). This method is much easier than to
extract the roots for each individual note, which runs into difficulties with

the roots of prime powers, as for notes 2, 6, 8, and 12 (C*, F, G, B), where
the 12th root itself must be extracted. But the method by proportion lacks in
accuracy, for an error for any note is magnified in succeeding notes. Even so,
the maximum error is only .4 cent. The deviation for Stevin’s monochord
lies between those for Schréter’s two monochords.



Stevin has worked out a second monochord for equal temperament upon

the same principle as the first, but with a different order of notes.>> Here the
maximum error, for E, is 1 cent. The fact that the two monochords do differ
indicates that proportion is not the ideal method (see Table 69).

At the same time that Stevin was setting down the figures for equal
temperament, or perhaps a few years earlier (1595), Prince Tsai-yii in China
was making a much more elaborate and careful calculation of the same roots

of 2.°* We are not told how he performed his calculation, but, since it is
correct to nine places, he must have extracted the appropriate root for each
note separately—and without the aid of logarithms, which were to simplify
the problem so greatly for men who attempted it a few decades later. In some
cases, since the tenth digit will be 5 or larger, modern computers would
round off the number at the ninth digit by substituting the next higher digit.
This is a convention of our mathematics, intended to reduce the error arising
from rounding off a number. Tsai-yii never did this.

Table 69. Stevin’s Monochord, No. 2

Lengths 10000 9438 8908 8404 7936 7401 7071

Names E F X G 4 A 4
Lengths 6674 6298 5044 5611 5296 5000
Names B C x D X E

Probably the first printed solution of equal temperament in numbers was
made in Europe in 1630, a generation after Tsai-yli’s time, when Johann

Faulhaber solved a problem propounded by Dr. Johann Melder of Ulm.>>
The problem was to divide a monochord 20000 units in length, so that all
intervals of the same size should be equal. Faulhaber did not explain to his
readers how he had arrived at his result (Table 71), presenting it rather as a
riddle. His monochord was for equal temperament, but contained several
errors of 1 in the unit’s place. This is the sort of error likely to occur when
logarithms are used, and we might suppose Faulhaber had made use of the
logarithmic tables printed in his book.



Table 70. Tsai-yli’s Monochord

C 500,000,000 F 749,153,538
B 529,731,547 E 793,700,525
X 561,231,024 x 840,896,415
A 594,603,557 D 890,898,718
X 629,960,524 x 043,874,312
G 667,419,927 C 1000,000,000
X

707,106,781

Table 71. Faulhaber’s Monochord

Lengths 20000 186877 17817 16817 15874 14082 14141

Names C X D X E F x
Lengths 13341 12568 11891 11224 10504 10000
Names G b § A X B C

Mersenne has given a number of different tables of equal temperament.
The most characteristic, to six places, was furnished by Beaugrand, “very

excellent geometer.”>% Mersenne also printed a table of first differences for
the numbers in this monochord, to be used in connection with a method by
Beaugrand for constructing the equal semitones. A comparison with Tsai-
yli’s table shows this one to be very inaccurate, the errors being much larger
than if logarithms had been used.

A much more ambitious table was contributed by Gallé.’” In this table
the lengths were given to eleven places. Beside it Mersenne printed a table
with 144,000,000 as fundamental, so that the numbers might readily be
compared with those of “the perfect clavier with 32 keys or steps to the
octave,” which had been presented in the book on the organ. This table will
not be included here, for it seems likely that Mersenne himself computed
these numbers from Gallé’s larger table, by multiplying them by .00144. Of
the numbers in the table, the length for D is correct to only five places. The
others agree fairly well with Tsai-yii to the ninth place, although there are
some slight divergences. Beyond the ninth place no digits are correct. If
Gall¢ was using logarithms, he made some serious errors in interpolation.
But if he was extracting roots, it is difficult to see how he failed to find

correctly the middle number, the length for F*, which represents 10!! times



the square root of 1/2. It should be ten units larger. The length for E® (10!!
times the fourth root of 1/2) agrees neither with the correct value nor with

the square root of the length for F*,

Our final table from Mersenne”® was supplied by Boulliau, “one of the
most excellent astronomers of our age.” In it he expressed the string-lengths
for equal temperament in degrees, minutes, and seconds. This is equivalent
to having a fundamental of 14400 in decimal notation, and the errors should
be no greater than for such a table. However, the errors are greater than in
Stevin’s four-place table, with a mean deviation of about 1 cent. We can only
surmise how Boulliau computed his figures. Evidently the sexagesimal
notation is somehow linked with his method of extracting the roots.

Neidhardt printed six-place tables in equal temperament from Faulhaber,

Mersenne, and Bumler, as well as several of his own.”” His first original
method was to divide the syntonic comma arithmetically, thus giving rise to
a twofold error. The arithmetical division makes little difference, but the fact
that the syntonic comma is about two cents smaller than the ditonic comma
means that each fifth will be about .2 cent sharper than in correct equal
temperament. Such a division is fairly easy to make, and, as the cents values
indicate, the errors are small. The mean deviation is about 1 cent.

Later, Neidhardt®® was to divide the ditonic comma, both arithmetically
and geometrically, the latter method being genuine equal temperament. He
contended, however, that the differences between these two methods were
negligible. Since the greatest variation is 5 units, in tables containing 6
digits, his contention was correct. Note that the numbers for the arithmetical
division are the larger throughout the table. The true values come closer to
his geometrical division, but in every instance lie between the two.

Neidhardt’s contemporary, Jakob Georg Meckenheuser,®! printed a table,
“as computed in the first Societits-Frucht,” evidently the proceedings of
some learned society. From his figures, the syntonic comma is divided
arithmetically, as in Neidhardt’s first monochord. But evidently
Meckenheuser’s division ran to sharps, for seven of his notes were higher in
pitch than the corresponding notes in Neidhardt’s monochord. The higher C

is not a true octave, but a B¥ tempered by a full syntonic comma, just as his
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F is really a tempered E”. The ratio of these pairs of enharmonic notes is the
schisma, about 2 cents. Thus even when two temperaments are constructed
upon the same hypothesis and both are intended for equal temperament,



there may be a lack of agreement unless the process is followed through in
exactly the same way for both. If it is true equal temperament, however, it
does not matter in what order the notes are obtained, whether on the sharp or
the flat side or mixed up in anyway whatever. In Table 77, Meckenheuser’s
numbers have been divided by 18. This tends to conceal his rather obvious
arithmetical division of the comma: in the original, every number except one
(the length for D) ends in zero. There the value for G had been 240200000.
This has been corrected to 240250000, since the number should be
240000000 tempered by 1/12 x 1/80 = 1/960.

Table 72. Beaugrand’s Monochord

Lengths 200000 188770 178171 168178 158740 149829 141421

Names C X D X E F X
Lengths 133480 125992 118520 112245 105945 100000
Names G X A X | B c

Table 73. Gallé’s Monochord

=*O* =100

50,000,000,000
52,973,154,575
56,123,102,370
59,460,355,690
62,996,052,457
66,741,992,715
70,710,6178,109

F
E
X
D
X
C

74,915,353,818
79,3170,052,622
84,089,641,454
89,090,418,365
94,387,431,198
100,000,000,000



Table 74. Boulliau’s Monochord

Sexagesimal Notation Dccimal Notation The Same, 20000 as Fundamental

c® o 0 7200 10000
B2 1 12 7632 10600
X 2 14 52 8092 11239
A2 22 53 8573 11907
x 2 31 12 9072 12600
G2 40 5§ 0605 13340
x 2 49 139 10179 14138
F 2 59 32 10772 14961
E 3 10 5 11405 15840
x 3 21 50 12110 16819
D 3 33 43 12823 17810
x 3 46 20 13580 18861
cC4 0 0 14400 20000

Table 75. Neidhardt’s Division of Syntonic Comma

Lengths 200000 188867 178148 168220 158683 140845 141344

Names C Db D EP E F F*
Cents 0 99.1 200.3 288.5 400.6  489.9 601.0
Lengths 133472 126041 118888 112268 105898 100000
Names G AP A BY B C

Cents 700.2 T99.3 900.5 999.7 11008 1200



Table 76. Neidhardt’s Division of Ditonic Comma

Arithmetical Geometrical
C 100000 100000
B 105948 105945
x 112247 112245
A 118922 118920
X 125994 125991
G 133484 133483
X 141424 141420
F 149831 149830
E 158743 158739
X 168182 1681178
D 178182 1781179
X 188779 188774
C 200000 200000

Since the syntonic comma is much easier to form than the ditonic, it is
easy to see why it should have been preferred as the quantity to be divided.
However, since the ratio of the two commas is about 11:12, an excellent
approximation for equal temperament can be made by tempering the fifths

by 1/11 syntonic comma.®?> This was done arithmetically by Sorge, with the
results shown in Table 78. The mean tempering of his fifths is 1/886, whence
the ratio of the fifth will be .667419962 ..., instead of .667419927 ... .
However, there are larger errors for most notes, since the temperament is not
built solely by fifths, and the temperament as a whole is comparable to
Neidhardt’s arithmetical division of the ditonic comma.



Table 77. Meckenheuser’s Division of Syntonic Comma

Lengths 200,000,000 188,658,258 178,148,341 168,045,776 158,684,002

Names C ct D ) 5 E
Cenis 0 101.0 200.3 301.3 400.6
Lengths 149,635,380 141,346,458 133,472,222 125,903,184 118,889,159
Names Ef Ff G G* A
Cents 501.6 600.9 700.2 801.2 900.5
Lengths 112,147,215 105,899,532 99,894,201

Names A¥ B B*

Cents 1001.5 1100.8 1201.8

Table 78. Sorge’s Division of Syntonic Comma

Lengths 200000 188775 178182 168181 158743 140831 141422

Nzmes C ct D p* E Ef F?
Lengths 133484 125994 118923 112247 105948 100000
Names G Gt A a¥ B C

The impression is likely to become quite strong as one reads the second
half of this chapter that equal temperament is nothing but a mass of figures
of astronomical size. Actually, as far as the ear is concerned, a wholly
satisfactory monochord in equal temperament (or any other tuning system)
would be obtained from the division of a string a meter long, marked off in

millimeters. Mersenne®® gave such a table, considering it more practicable
than the very complicated tables of Beaugrand and Gall¢. It could easily
have been constructed from one of the more elaborate tables by rounding off
the numbers at three places. Oddly, many of Mersenne’s figures are one unit
too large. The correct monochord is shown in Table 79. It is instructive to
note that the deviation for this monochord is larger than for one of Marpurg’s
irregular tunings,® and about the same as that for a couple of his other
tunings. Thus, to three places, Marpurg’s systems would have coincided with
equal temperament.



Table 79. Practical Equal Temperament, after Mersenne

Lengths 1000 044 891 841 794 745 707 667
Names C X D F E F X G
Cents 0 99.8 199.8 299.8 3994 500.3 600.3 701 .1
Lengths 630 595 561 630 500

Names X A b § B C

Cents 799.9 8DB.9 1000.7 1080.9 1200
M.D. .60; 8.D. .81

In 1706 young Neidhardt, full of importance as the author of a new book
on temperament, Beste und leichteste Temperatur des Monochordi, held a
tuning contest with Sebastian Bach’s cousin, Johann Nikolaus Bach, in

Jena.® Neidhardt tuned one set of pipes by a monochord he had computed
by making an arithmetical division of the syntonic comma. Therefore,
although he had worked out this division to six places, it was about as
accurate as the practical monochord given above. Bach tuned another set of
pipes entirely by ear, and won the contest handily, for a singer found it easier

to sing a chorale in B® minor in Bach’s tuning than in Neidhardt’s.

Perhaps part of Neidhardt’s difficulty lay in the fact that it is difficult to
tune a pipe to a string. Many years later, Adlung wrote that this same Johann
Nikolaus Bach had what might be called a “monopipe”—a variable organ
pipe with a sliding cylinder upon which the numbers of the monochord were

inscribed.®® Because of the end correction for a pipe, this method is likely to
be faulty. However, forty years before the date of the historic tuning contest

in Jena, Otto Gibelius®’ described and pictured just such a pipe, intended for
his meantone approximation discussed in Chapter III. He also gave an end
correction, amounting to 8/3 the width of the mouth of the pipe. In his
accurately drawn copperplate (see Figure F) the width of the mouth is 11
millimeters, making the end correction about 30 millimeters. Since the
internal depth is about 15 millimeters, his rule corresponds very closely to
our modern rule that the end correction for a rectangular pipe is twice the
internal depth. The Dayton Miller Collection now at the Library of Congress
contains several specimens of the “tuning pipe,” most of them fairly small.



Since the “tuning pipe” was not widely disseminated, organists tuning by
the aid of the monochord probably had no more success than Neidhardt had.
It is probable, however, that, like Johann Nikolaus—and Sebastian, too—the
organists did not bother with a monochord but relied upon their ears. Hence
the tuning rules given in the beginning of this chapter were of the greatest
possible importance in practice. Some of them seem so vague that they
would have needed to be supplemented by oral directions. But if we could be
sure that Mersenne’s rule that a tempered fifth should beat once per second
was to have been applied to the fifths in the vicinity of middle C, we would
have as accurate a rule for equal temperament as that given by Alexander
Ellis over two centuries later.
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Unfortunately, the more mathematically minded writers on equal
temperament have given the impression that extreme accuracy in figures is
the all-important thing in equal temperament, even if it is patent that such
accuracy cannot be obtained upon the longest feasible monochord. This is
why Sebastian Bach and many others did not care for equal temperament.
They were not opposed to the equal tuning itself, and their own tuning
results were undoubtedly comparable to the best tuning accomplished today—
upon the evidence of their compositions, as will be discussed in the final
chapter. But they needed a Mersenne to tell them that the complicated tables
could well have had half their digits chopped off before using, and that, after
all, a person who tunes accurately by beats gets results that the ear cannot
distinguish from the successive powers of the 12th root of 2.
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Chapter V. JUST INTONATION

The seeds of just intonation had been sown early in the Christian era, when
Didymus and Ptolemy presented monochords that contained pure fifths and
major thirds (see Chapter II). But they remained dormant during the Middle
Ages. Even after the seeds had sprouted near the beginning of the modern
era, the plants were to bear fruit only occasionally and haphazardly.

Enough of our metaphor. We shall consider in this chapter all 12-note
systems that contain some arrangement of pure fifths and major thirds. The
Pythagorean tuning may be thought of as the limiting form of just intonation,
since it has a great many pure fifths, but no pure major thirds. As the various
chromatic notes were added to the scale during the latter Middle Ages, they
were tuned by pure fifths or fourths to notes already present in the scale.
Finally, fifteenth century writers were describing the formation of a
complete chromatic monochord, using the Pythagorean intervals. Such a

writer was Hugo de Reutlingen,! whose altered notes consisted of two sharps

and three flats. Since the more typical tuning has G instead of AP, that is
shown in Table 80. Of course the deviation would be the same as for Hugo’s
tuning. The ratio for each diatonic semitone is 256:243, and for the
chromatic semitone 2187:2048. Compare with these ratios the relative
simplicity of the ratios for Marpurg’s first tuning, the model form of just
intonation. (The lengths are very much simpler also.)

The first known European writer to break away from the Pythagorean
tuning for the tuning of the chromatic monochord was Bartolomeus Ramis
de Pareja.” Ramis gave specific directions for tuning the monochord that
resulted in a system in which the six notes Ab? .G ? are joined by perfect
fifths, as in the Pythagorean tuning, and the remaining six notes, D~'-C*,
also joined by fifths, lie a comma higher than the corresponding notes in the
Pythagorean tuning (see Table 81). Thus there are pure major thirds to only
the four notes B°-G.



Table 80. Pythagorean Tuning

Lengths 629856 589824 559872 531441 407664 472302 442368

Names c° ctre Df EY E° F° F*°
Cents 0 114 204 204 408 498 612
Lengths 419904 393216 373248 354204 32177€¢ 314028

Names G° Gte . Boe B’ c°®

Cents 702 B1B 9086 9986 1110 1200

M.D. 11.7; S.D. 11.€

Table 81. Ramis’ Monochord
- . - - [ - o
Names C€° ¢ D' EP® E' F° F ' G’ A" A' B® B ¢
Cents 0 92 182 294 386 498 590 702 792 BA4 956 1083 1200
M.D. 10.0; 8.D. 10.1

Montucla,? writing a “history of music,” gave string-lengths for a 17-
note tuning, in which twelve notes are the same as in Ramis. The other five
extend the scale to A#=! and to gb-9. This is a wholly useless extension
because such enharmonic pairs as pb® and C*! differ by the schisma, 2
cents. Helmholtz was more astute in constructing his 24-note harmonium in
just intonation, in which the eight notes from C° through C*" are joined by
fifths; the next eight, E-! through E*!, furnish major thirds to notes in the
first series; and the remaining eight, A" through A*!, are considered (by
disregarding the schisma) as equivalent to the thirds above the notes in the
second series, i. e., G*2- Gx2.4

Ramis’ monochord does not differ perceptibly from the Pythagorean
tuning. If he had substituted D°° and all the other Pythagorean enharmonic
equivalents of the syntonic notes, he would have had a monochord from EP®”
through G°, in Pythagorean tuning. His reason for making the new division
was solely to simplify the construction of the monochord. In his own words,
the Pythagorean tuning, as given by Boethius, is “useful and pleasing for
theorists, but tiresome for singers and irksome to the mind. But because we
have promised to satisfy both [singers and theorists], we shall simplify the



division of the monochord.” Later he expressed the same idea in these
words: “So therefore we have made all our divisions very easy, because the
fractions are common and are not difficult.”

Undoubtedly Ramis’ method is easier. But if he had desired to obtain the

equivalent of the Pythagorean tuning from AP to C¥ he would have
commenced his tuning with F* instead of with C, having notes with zero

exponents from DY to C? and with -1 from G*! to Fx!. On such a
monochord, however, as on the usual Pythagorean monochord, the eight
most common thirds would have been very sharp and the four useless thirds,

E-AP, B-EP, F”-BY and C"-F, would have been pure. The monochord, as

Ramis actually tuned it, has as its four pure thirds, Bb-D, F-A, C-E, and G-B.
Thus, although Ramis professed to be making his division of the octave
solely for the sake of simplicity, the accidental result was that several pure
triads were available in keys frequently used.

The bitter critics of Ramis in his own day failed to realize that his tuning
was just what he had described: a simplified equivalent of the Pythagorean
tuning — shifted, however, by six scale degrees to the flat side. To them, any
tampering with the old intervals was sacrilege. Many later writers, misled by
Ramis’ announced intentions, have stated, without examining his
monochord, that he had advocated temperament. As we have defined
temperament and as the word is usually understood, this is a serious
misconception. It has even been stated that Ramis advocated equal
temperament! Since Ramis’ book is accessible in a modern edition, there is
no longer any excuse for repeating such myths.

It must be said, somewhat sadly, that Ramis was not aware himself of the
peculiar properties of the monochord he had fathered. For example, he

explained that although E® does not form a major third to B, D* is not really
needed, for the minor triad B D F* can be used in making a Phrygian
cadence on E. But his interval B-!-E®’ is slightly better than the Pythagorean

thirds, A*°-C” and E®°-G’, that were acceptable to him!

Ramis must have been a good practical musician. Although his system
would not now be called a temperament, we might do well to take him at his
own evaluation and hail him as the first of modern tuning reformers.

Corroboration of Ramis’ tuning system is found in an interesting
anonymous German manuscript of the second half of the fifteenth century,

Pro clavichordiis faciendis, which Dupont® ran across in the Erlangen



University Library. Starting with the note B, C is to be a just semitone
(16:15) higher, E a perfect fourth, G a just minor sixth (8:5), etc. A

succession of pure fifths on the flat side extends to G, below which there is
a just major third (5:4), E®®, and the monochord is completed by adding B?,

the fifth above E*®! The complete monochord is shown in Table 82.

The deviation for this tuning is almost precisely the same as for that of
Ramis, and it too contains many pure fifths and several pure thirds.
However, it has one peculiar feature as Dupont has presented it. In every
other tuning system we have examined, there has been an uninterrupted
succession of notes connected by fifths from the flattest to the sharpest. In
the Pythagorean and other regular tuning systems, such as the meantone, the
wolf fifth would be very flat or sharp, and in the irregular systems there
would be other divergences. But the note names persisted, usually from EP to

G" inclusive.
Table 82. The Erlangen Monochord

Names C° Db® gbb pbe E7 F° GP° G° aAY Ebbﬂﬂhu B C
Cenis 0 80 202 294 336 49B 5B8 T0Z2 792 904 998 1088 1200
M.D. 10.3; 5.D. 10.5

But in the Erlangen monochord there i1s no D or A, and the notes that

Dupont has given as their enharmonic equivalents, EP® and B®®, are not in a
fifth-relation with any other notes in the monochord. Therefore it seems

obvious that the anonymous writer intended these notes to be D° and A’
each of which is higher by the schisma than EP®*! and BP®*! respectively.
Then the notes that are pure thirds above D° and A" will be F#! and C*1,
notes that continue the fifth-series from B-!. It would then be immaterial

whether to call the semitone between G and A by the name A® or G*I,
since either would complete the scale correctly. The original writer, by the
way, had not named the black keys, merely designating the semitone
between C and D as the first, between D and E as the second, between F and
G as the third, and between G and A as the fourth. In renaming some of the
black keys, therefore, we are not violating his intent, but rather confirming it.
The revised monochord, with schismatic alterations, is shown in Table 83.



These two pre-sixteenth-century tunings, the one in Spain and the other
in Germany, are sufficient indication of the trend of men’s thinking with

regard to consonant thirds. Lodovico Fogliano,® half a century later than
Ramis, offered no apologies for using the 5:4 ratio for the major third. But

he was not content to present ordinary just intonation. Realizing that D’
formed an imperfect fifth below A-!, he advocated D! as a consonant fifth.
This in turn led him to B° as a pure major third below D!, as well as the
BY" as third below D’. But he said the “practical musicians” used only one
key each for D and B, “neither right nor left, but the mean between both.”

“Such a mean D or B, moreover, is nothing else than a point dividing the
proportion of the comma into two halves.”

Table 83. Erlangen Monochord, Revised

=1 0

Names € ¢*™'D" E¥ £ ¥ F G G A" BP B C
Cents 0 82 204 294 3B6 493 590 702 794 006 996 1088 1200
M.D. 10.0; S.D, 10.1

To obtain the mean proportional by geometry, Fogliano used the familiar
Euclidean construction, and appended a figure to show how the division was
to be made. This alteration of pure values, he said i1s “what they [the
practical musicians] call temperament.” Here is the germ of the meantone
temperament, which his countryman Aron had described in its complete
format about this same time.

For the sake of showing monochords in just intonation from the early
sixteenth century, there are set down here three monochords after Fogliano,

first with his one pair of D’s and BYs, then with the second pair, and finally
with the mean D and BP. The first monochord (Table 84) is the best, having
two groups of four notes each with like exponents. The second monochord
(Table 85) would have had the same deviation as the first if it had had F*!
(in place of F#?) as third above D°. (This is Marpurg’s first monochord,
Table 96.) The monochord with the two meantones (Table 86) ranks between
the first two. If Fogliano had formed three meantones, including one on F¥,
the deviation would be slightly less than for the first monochord. The result
is given in Table 87.



Lengths
Names
cents
Lengths
Names

Cents

Lengths
Names
Cents
Lengths
Names
Cents

Lengths
Names
Cents
Lengths
Names
Cents

3800
Cﬂ

2304
G'-?
772

3600

9304
G
772

J600

2304
G" -2
M2

Table 84.Fogliano’s Monochord, No. 1

3456 3240 3000 2880 2700 2592
c?-1 D-! ED+ E™! F° Fr-2
10 182 316 J86 498 REA
2160 2025 1920 1800
ﬁ" Bhn B—: E.n.
334 896 1088 1200
M.D. 21.3: S.D. 23.6
Table 85. Fogliano’s Monochord, No. 2
3456 3200 3000 2880 2700 2082
C#-i DI} Eh‘ﬂ F° Fl-'-:
70 204 316 286 498 o6B
2160 2000 1920 1800
K* g gt
884 1018 1088 1200
M.D. 25.0; S§.D. 26.7
Table 86. Fogliano’s Tempered Just Intonation
3456 [3220] 3000 2880 2700 2592
ct2 pi gbm g g 2
T0 193 316 J86 498 268
2160 [2012.5] 1820 1800
A B B C°
884 1007 1088 1200

M.D. 23.2; 8.D. 24.7

2400
GO
02

2400

102

2400
G°
702



Table 87. Fogliano’s Tempered Just Intonation, Revised

Lengths 3600 3456  [3220] 3000 2880 2700  [2576

Names " cF - p-t gb+ E™! | F3
Cents 0 70 193 316 336 498 579
Lengths 2400 2304 2160  [2012.5] 1920 1800

Names ¢ G#-t A pb*: B~ (C°

Cents 702 M2 884 1007 1068 1200

MD. 21.3; S.D. 22.3

Martin Agricola’ resembled Ramis in his tuning ideas. He gave a
monochord in which the eight diatonic notes, including B, were joined by
pure fifths, as in the Pythagorean tuning. Then he directed that the interval
from B to the end of the string be divided into ten parts, with C # at the first
point of division, D* at the second, and G* at the fourth. Then F was to be a
pure fourth to C. Thus these black keys were given syntonic values, and the
whole monochord is made up of notes with 0 and -1 exponents (see Table
88). Ramis’ monochord is slightly better than Agricola’s, with a ratio of 6:6
for the number of fifths in each group, in place of 8:4.

Table 88. Agricola’s Monochord

Names C° cFipp Dpi-E° F° Ff-1g¢ G¥! o B RBC (°
Cents 0O 92 204 296 4D3 498 590 702 794 906 996 1110 1200
M.D. 10.3; 8.D. 10.5

It will be observed that the better of Fogliano’s untempered monochords
has more than twice the deviation of Ramis’. Thus it might be thought that
Fogliano had been unfortunate in his choice of intervals. Quite the contrary.
The most symmetric form of just intonation for the series E°-G* has four
notes with the same exponent, followed by four more with exponents that
are one less. Of the remaining four notes, two would have +1 and two would
have -2 as exponents. This is precisely Fogliano’s second monochord, if we

should substitute F#! in it. Fogliano’s first monochord has the exponential



pattern 1,4,4,3, which is just as satisfactory. (That is, the tuning contains one
note with exponent +1, 4 with 0 and -1 exponents, and 3 with -2.) The
difficulty, therefore, is inherent in just intonation itself, as will be discussed
further a bit later.

Salomon de Caus® was one of several mathematicians of the early
seventeenth century who were interested in just intonation. If we follow his
directions, we obtain the monochord shown in Table 89. Here there are three
groups of four notes each with the same exponent — the most symmetric
arrangement of all. The deviation is appreciably less than in Fogliano’s
arrangement.

Johannes Kepler” gave some genuine tuning lore together with an
elaborate discussion of the harmony of the spheres. His two monochords in
just intonation (Tables 90 and 91) are identical except that the second has a
G" in place of an AP. Since Kepler had five notes with zero exponents in
both monochords, the deviation for his systems is lower than most that have
been presented in this chapter.

Table 89. De Caus’s Monochord

Names C° cf-2p-t p#-2 g=t g0 g¥-2 G0 G-z pgbe pg-1 (0
Cents 0 70 182 274 386 498 568 702 772 884 006 1088 1200
M.D. 17.7: §.D. 20.1

Table 90. Kepler’s Monochord, No. 1

Lengths 1620 1536 1440 1350 1296 1215 1162

Names c? c*-1 D¢ ED+H E™ Fo ph =1
Cents 0 92 204 316 486 498 280
Lengths 1080 1024 960 900 864 810

Names G° c*+ AP pb+ B" ce

Cents 702 704 906 1018 1088 1200

M.D. 14,0; $.D. 15.8

Although Marin Mersenne was a zealous advocate of equal temperament
in practice, he took pains to present literally dozens of tables in just



intonation. He repeated, among others, Kepler’s two monochords shown in
Tables 90 and 91, together with tables for keyboards with split keys. Four of
his monochords (Tables 92-95) are worth including here, as evidence of the
variety that is possible in a type of tuning that is ordinarily thought to be

fixed and uniform.!? None is as good as either of Kepler’s two.

Lengths
Names
Cents
Lengths
Names

Cents

Lengths
Names
Cents
Lengths
Names

Cents

100000

co
0
66667
Gﬂ-
702

3600

2400
G[I
102

Table 91. Kepler’s Monochord, No. 2

03750 88880 833333 80000 75000 71111
ct-1  po Ebn g1 FO Ff-1
92 204 316 386 493 500

62500 60000 56250 53333 50000
AP p° BY * B g
814 906 1018 1088 1200

M.D. 14.0; S.D. 15.0

Table 92. Mersenne’s Spinet Tuning, No. 1

3375 3240 3000 2880 2700 2531 1/4

pt** p*  gd" g o gt

112 182 316 386 498 610

2250 2160 2025 1920  1B00

FLATIEE 'S I - -

814 8B4 096 1088 1200

M.D. 17.7; 8.D. 20.1



Lengths
Names
Cents
Lengths

Names

Cents

Names C°

Cents

Names C°

Cents

0

0

Table 93. Mersenne’s Spinet Tuning, No. 2

3600 3456 3200 3072 2880 2700 2602 2400
cﬂ c#'? Dﬂ Dﬂ‘! E'l Fﬂ' F#"E GD
0 70 204 274 386 498 068 702
2304 2160 2025 1920 1800
P At B BT o
712 884 906 1088 1200
M.D. 21.3; S.D. 23.6
Table 94. Mersenne’s Lute Tuning, No. 1
Dh“D" gbsi g-1 po  gbtige *lbﬂa—; gbit Bt o
112 182 316 3686 458 610 702 814 684 1018 1088 1200
M.D. 21.3; S.D. 23.6
Table 95. Mersenne’s Lute Tuning, No. 2
pP*'p> EPTMET F° GPT'G® APMATI B BT co

112 204 316 386 468 610 T02 814 8B4 1018 1088 1200
M.D. 17.7, SD. 201



Table 96. Marpurg’s Monochord, No. 1

Lengths 900 864 800 750 720 675 640
Ratios 24/25 25/21 15/16 24/25 15/16 128/135
Names c’ ct™ D’ got E™ ¥ -
Cents 0 70 204 316 386 498 590
Lengths 600 576 540 500 480 450

Ratios 15/16 24/25 15/16  25/27 24/25 15/16

Names ¢ G A b B c®

Cents T02 T72 884 1018 1088 1200

M.D. 21.3; S.D. 23.6

Table 97. Marpurg’s Monochord, No. 3

+ -
Nemes C° c# ™ pe g% g+ p* §7 @ GJ"’*2 ac pb’ gt @
Cents O 70 204 306 386 498 590 702 772 906 996 1088 1200
M.D. 19.3; 8.D. 22.0

Table 98. Marpurg’s Monochord, No. 4

-l -] n

Names C° ct?p™ gb™ g~ §® §#°'G° @i-%a"' g**" B ¢
Cents D0 70 182 316 38¢ 498 568 702 772 884 1018 1088 1200
M.D. 25.0; 5.D. 26.7

Note that Mersenne’s first spinet tuning (Table 92) has flats for its black

keys and the second tuning (Table 93) has sharps except for BP. The first
tuning is constructed exactly the same as de Caus’s tuning (Table 89), except
that it begins a major third lower, with G® instead of B®. Mersenne’s first lute
tuning (Table 94) differs from his first spinet tuning (Table 92) at only one
pitch (B®*! instead of B®), but that is enough to increase its deviation to that
of the second spinet tuning (Table 93). The second lute tuning (Table 95),
although differing from the first spinet tuning (Table 92) at two places, has
the same deviation.



Friedrich Wilhelm Marpurg,!! who wrote brilliantly about temperament
140 years after Mersenne, included four monochords in just intonation. The
second of these was Kepler’s first, and need not be repeated here. The other
three are shown in Tables 96-98. In each of them the notes, according to
their exponents, are grouped into four classes. The first may be considered
the model form of just intonation, the ideal form of Fogliano’s second
monochord (Table 85).

Opelt has shown two monochords in just intonation from Rousseau’s

Dictionary!'?. The first (Table 99) was by Alexander Malcolm, whose linear

improvement upon just intonation is to be found in Chapter VII. This is the

same as Kepler’s second monochord (Table 91), transposed a fifth lower.
Rousseau tried to “improve” upon this tuning by substituting other just

pitches in place of DY*!, F#1 and BY, with very unsatisfactory results, since
his division of the major tone of 204 cents was into semitones of 70 and 134
cents! This monochord (Table 100) is the reverse of Marpurg’s fourth (Table

98), with semitones paired in contrary motion, when Rousseau’s AP*! is
made to coincide with Marpurg’s G*-2.

Table 99. Malcolm’s Monochord

Names C 0 Db‘l‘l D o Eb'ﬂ. E-'. F o F#-l Gﬂ Atr-hl A—L Bbﬂ B =1 C i)
Cents 0 112 204 316 386 498 590 702 814 884 996 1088 1200
M.D. 14.0; S.D. 15.8

Table 100. Rousseau’s Monochord

Names C° cf*p® Eb* E-t p° §f2 g¢ pb¥t p=t gb+ gt @
Cents 0 70 204 316 386 493 568 T02 Bl4 884 954 1088 1200
M.D. 25.0; S.D. 26.7



Table 101. Euler’s Monochord

Names C° c™ P p*2 gt ¥° 7P ' G° Gf2 p at? g (°
Cents 0 90 204 274 386 493 590 T02 T72 884 976 1088 1200
M.D. 17.1; 8.D. 20.1

Table 102. Montvallon’s Monochord

Names ® cttp gV gt p¢ FF' @ Ggf! a-t Bb® Bt @
Cents 0 92 204 316 386 408 590 702 794 B84 096 1038 1200
M.D. 12.0; 8.D. 13.3

Table 103. Romieu’s Monochord

Names ¢ c'*p* gb*' g p° FYl g° GfY pt B gt @
Cents 0 70 204 316 3805 498 590 702 772 884 996 1083 1200
M.D. 17.7; S.D. 20.1

Euler’s monochord ran entirely to sharps.!> However, it has the same
symmetric grouping of its notes as de Caus’s (Table 89), only transposed a
fifth higher.

Montvallon’s monochord, given by Romieu,!4 follows a more familiar
order in the selection of notes than Euler’s did (see Table 102).
Romieu himself contributed an example (Table 103) of a “systéme

juste.”! It has a somewhat more complicated pattern than Euler’s (Table
101), but the same deviation.

Theory of Just Intonation

In the foregoing pages there have been presented more than twenty
different monochords in authentic just intonation, i. e., with pure fifths and
major thirds. Their mean deviations have varied from 10.0 to 25.0. And yet
each has a right to be called just intonation! This great divergence can be
explained by mathematics, Let us consider first a monochord in the
Pythagorean tuning. Its mean deviation is 11.7. A Pythagorean chromatic



semitone, as C -C*, is 114 cents; the diatonic semitone, as C*-D°, 90.
Hence the deviation for the pair of semitones is 24 cents. When the just

semitones are used, the chromatic semitone, C-C*! is 92 cents; the

diatonic, C*1-D°, 112. The deviation for the pair of just semitones is 20
cents, or 4 cents less than for the pair of Pythagorean semitones. Therefore
the substitution of each just note reduces the deviation by 4/12 or .3 cent.
But the sixth note to be altered around the circle of fifths is adjacent to
the first note to have been altered, and therefore the total deviation is
unchanged. The same is true for the seventh note. The eighth note lies
between two notes, each sharper by the syntonic comma. Therefore, when it
too is raised, the syntonic semitones already present are changed to
Pythagorean semitones, and the deviation is increased by .3 cent. This
process continues until all twelve notes have been raised by a comma, and
the monochord is again in Pythagorean tuning. If we call the number of
notes with -1 exponent n;, and with 0 exponent n,, the following formula

gives the mean deviation:

3D:=29+|n1-s]+[6-|n1-e|
6

The minimum deviation of 10.0 cents occurs when (n,n,) = (5,7), (6,6), or

(7,5). Thus Ramis’ monochord (Table 81) with 6,6 is one of the three best
possible.

When there are notes with three different exponents, the change of a
single note may cause a greater change in the deviation than was possible

with two exponents only. Suppose a monochord contains the notes C° C*!

D!, the total deviation being 18 cents for the two semitones. When C*2 is
used, the deviation becomes 42 cents, an increase of 24 cents. But if the

notes had originally been C* C*! D°, the change to C*2 would increase the
deviation from 20 cents to 64 cents, that is, by 44 cents, or two commas.

Again, the deviation of the two semitones C*"! D° E®*! is 24 cents; with D"!
it 1s 44 cents, an increase of 20 cents.

Thus when a note is changed by a comma, the change in the mean
deviation may be 1/3 (as before) or 6/3 or 11/3 or 5/3. A much more
complicated formula, therefore, is needed to express the deviation with the



three exponents. If we call the number of notes with -1 exponent n;, with 0,
n,, and with +1, n3, the mean deviation is given by the formula:

3D3=23+|n1-E|+|n,-ﬁ‘+|jﬁ,.m -Eﬂ+!_ﬁ-!ng -ﬁﬂ +

6 L6
T(ky — k 1) + 5(k4 — k3), where k; = the larger of n, and (7 — n), k, = the
smaller of 7 and (12 — n;), k; = the larger of n, and (5 — n;), and k, = the
smaller of 5 and (12 — n;). The terms containing the k’s are zero whenever k,
< kj and k, < k;

Let us now compute the deviations for two of the tunings shown on
previous pages. Mersenne’s first spinet tuning (Table 92) has for its
(ny,n,,n3) the numbers (4,4,4). Here k; =n, =4, k,=7,k;=n,=4,k,=5.

3D3=23+2+2+0+0+7x3+5x%x1=53.D;=17.7. For Mersenne’s

second spinet (Table 93) or first lute tuning (Table 94) the exponential
numbers are (4,3,5).
3D3=23+2+14+0+0+7%x4+5%x2+64.D;=21.3.

When there are four different exponents, there is a very analogous
formula for the deviation:

3-]3‘ =23=-n, +|n, +n, - B+|n, - E-f-l- 6 -|n1 + Ny -ﬁ|:|+
6
(6 - |n, -nl}- Mk, - k,) + 5k, - ky) + T(L, = L;) + 5(Ly =Ly )
%8

where k; = the larger of ny and (7 — n; — n,), k, = the smaller of 7 and (12 —
n; —n,), ky = the larger of ny and (5 — n; — n,), k4 = the smaller of 5 and (12
—n; —n,); L, = the larger of n, and (7 — n,;), L, = the smaller of 7 and (12 —
n;), Ly = the larger of n, and (5 — n;), and L, = the smaller of 5 and (12 —
n;). The terms containing the k’s and L’s are zero whenever k, < ki, k; <
ky,L,<L,,and L, <L;.

As examples, let us compute the deviation for two of Marpurg’s tunings.
His first tuning (Table 96) is the model form of just intonation, with (2,4,4,2)



for its (ny, ny, nyny). Herek; =4, k, =6, k;=4,k, =5, L =5,L, =7, ;=
4,andL,=5.Hence3D,=23-2+0+4+1+0+7x2+5x1+7x2+
5 x 1 =64. Dy, = 21.3. Marpurg’s third tuning (Table 97) has for its
exponents (2,3,6,1). Here k, =6, k;=7,k;=6,k,=5,L;=5L,=7,13=
4,L,=>5. The deviation: 3D, =23 -2+1+54+0+0+7x1+0+7x2+
5x2=58.Ds=193.

With all these complex mathematical formulas before us, we are likely to
forget that we are ostensibly studying a form of tuning that to many people is
a sort of ideal system. It is not likely that any sane person would advocate so
perverted a tuning as that represented by (5,1,1,5), with a mean deviation of
43.3 cents. But the systems that have been shown on the previous pages have
all been advocated by various writers, and they show great variety in their
construction and almost as great a variety in their deviations, ranging from
the 10.0 of Ramis to the 25.0 of Fogliano’s second or Rousseau’s or
Marpurg’s fourth. The model form, Marpurg’s first, with a deviation of 21.3,
comes nearer the maximum than the minimum. We shall speak again of just
intonation in the final chapter. Let us close this chapter with a double
paradox: there is no such thing as just intonation, but, rather, many different
just intonations; of these, the best is that which comes closest to the
Pythagorean tuning.

I Flores musicae omnis cantus Gregoriani(Strassburg, 1488), Chapter I1.

2 Musica practica (Bologna, 1482); new edition, by Johannes Wolf (1901), published as Beiheft der
Internationale Musikgesellschaft.

3 jean Etienne Montucla, Histoire des mathématiques (New ed.; Paris, 1802), IV, 650.

“H.LF Helmbholtz, Sensations of Tone, pp. 316 f.

S Wilhelm Dupont, Geshichte der musicalischen Temperatur (Erlangen, 1935), pp. 20-22.
6 Musica theorica (Venice, 1529), fol. 36.

7 De monochordi dimensione in Rudimenta mus ices (Wittemberg, 1539)

8 L es raisons des forces mouvantes avec diverses machines (Francfort, 1615) Book 3, Problem III.

9 Harmonices mundi, p. 163.

10 Mersenne, Harmonie universelle, pp. 54, 117 f.

1T Versuch iiber die musikalische Temperatur, pp. 118, 123.
2k w. Opelt, Allgemeine Theorie der Musik (Leipzig, 1852), p. 46.




BAFE Hiser, “Uber wissenschaftliche Begriindung der Musik durch Akustik,” Allgemeine
musikalische Zeitung, 1829, col. 145.

14 «“Memoire théorique & pratique sur les systemes tempérés de musique,” Mémoires de 1’académie
royale des sciences, 1758, p. 867.

15 Ibid., p.86s.

OceanofPDF.com


https://oceanofpdf.com/

Chapter VI. MULTIPLE DIVISION

If a keyboard instrument is not in equal temperament, its intonation can be
improved by a judicious increase in the number of notes in the octave. The
first reference to split keys came from Italy, where before 1484 the organ of

St. Martin’s at Lucca had separate keys for E® and D* and also for G* and
APl At this same time, Ramis® noted that split keys were being used in

Spain, but objected to having separate keys for AP and G* and for F* and G,
on the ground that this would be mixing the chromatic with the diatonic
genus. From Germany came further evidence of the divided keyboard from

Arnold Schlick,® who referred to an organ constructed at the turn of the
sixteenth century “ that had double semitones on manual and pedal . . .
which were called half semitones or ‘ignoten.’”

There are frequent references to multiple division during the sixteenth

and seventeenth centuries, chiefly by Italian theorists. Jean Rousseau* in
1687 deplored the fact that the French clavecins did not have the “doubles
feintes” common in Italy, and consequently had “mauvais effets dans les
Tons transposez.” But the split keys must have been very common in
Germany during the latter part of the seventeenth and beginning of the
eighteenth centuries, if we may judge by the copious references to
“subsemitonia” by Werckmeister and his successors. Buttstett, it is true, said
in 1733 that the sub-and supersemitonia were “mehr curieux als

practicabel.” But six years later, in Holland, van Blankenburg was to show

“’t Gesnede Clavier” with three extra keys, as well as an “Archicymbalam”
6

with eighteen notes in the octave.

Handel played on English organs with split keys.” Father Smith’s Temple
Church organ in London, constructed in 1682—83, had the same pairs of
divided keys as the Lucca organ, G*-A® and D"-EP, and so did Durham
Cathedral. The organ of the Foundling Hospital (1759) had an ingenious
mechanism by which DP and AP could be substituted for C* and D¥, or D*
and A” for E® and BP, thus increasing the compass to sixteen notes, without
increasing the number of keys.



Many of the sources said nothing about the tuning of the extra notes, and
we can freely assume that whatever variety of meantone temperament was
used for the twelve regular notes was extended both clockwise and
counterclockwise around the circle (or, rather, spiral) of fifths. More
interesting to us are the systems that represent just intonation, as extended to
the enharmonic scale. We have already noted that Fogliano (1529) had felt
the need for two D’s and two B’s, to ensure just triads, but was willing to

settle for a mean D and a mean B"s. But van Blankenburg, mentioned
above, included both pairs of notes in his Archiecymbalam, and so did
almost all of the men whose systems will be described below.

The “enharmonic genus” of Salinas® was one of the earliest and best of
these systems. Although it contained twenty-four notes, it had nothing in
common with a real enharmonic scale composed of quarter tones. It is just
intonation extended to seven sharps and six flats. In tabular form it would
appear as shown in Table 104.

Observe that all the notes in the right diagonal are duplicated on the left,
a comma lower. Thus it is possible to play all major triads from GP through
G”, and all minor triads from EP through E¥. Mersenne’s “parfait diapason’”
is based upon Salinas’ system, with the addition of seven more notes, or
thirty-one in all (see Figure G). These would be joined to Table 104 on the
left side, as shown in Table 105.

13

Table 104. Salinas’ Enharmonic Genus
A#- 2 E#-2 B#-E
F#-l C#—l G#-l D*—l hf—l
D° A° E Bu Fi‘u
Bb +1 FH C+1 G-H. D‘H
Gb 42 Dh +2 Ahﬂ Eh+2 .Bh.ﬂ
Gb+ 3
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Fig. G. Mersenne’s Keyboard with Thirty-One Notes in the Octave (From
Mersenne’s Harmonie universelle) Reproduced by courtesy of the Library of
Congress

Table 105. Mersenne’s Addition to Salinas’ System

A-* E-* B-!
FY G°
hhﬂ E'l;|-+:l

This is not a particularly clever addition. Note that Mersenne did not
have a C°. Furthermore, for the sake of symmetry, there should have been
D"l in the lowest line of Mersenne’s additional notes, B?**2, Fb™2 and Cb*2
in the line below it, and C*2, G*2,andD* 2 in the line above the highest line,
or a total of thirty-nine notes.

The praiseworthy thing about Mersenne’s addition is that it recognized
the need for having more pairs of notes differing by a comma. Imperfect as
his scheme was, it would be much more useful than the 34-note keyboard of
Galeazzo Sabbatini, given by Kircher.!? There were, as usual with Kircher,
many errors in the figures, and an erratic manner of naming the notes. The
actual notes of Sabbatini’s keyboard are shown in Table 106.



Table 106. Sabbatini’s Keyboard

cx= Gx-3 Dzx- A x-3

A*-2 g#-2 p¥-2 [Fu-lj
pi=L C#-l =t pt-l
D° A® E® B’
Bb +H F-+- 1 CH Gﬂ
E;b%] pb+? Ab*? pbt?
Ehh +3 Ebhﬂ Fb+2 Cb +3

cbb*+ gbb*  pbb* Abb*™
gbbbts pbbb**  [pbb*?]
pbbb+

Except for the three notes in brackets which have been supplied, this is a
beautifully symmetric scheme. But how different from that of Salinas! Here
there are no notes differing by the syntonic comma, with the result that no
major triad based on a note in the diagonal on the right will have a pure fifth,
and there will be a similar series of defective minor triads. With this
intonation it is not even possible to supply a missing note by its enharmonic
equivalent, because no pair of notes differs by the ditonic comma either. The
most characteristic small interval in it 1s the great diesis of 41 cents, as

between A* ~2 and BY'!, whereas A*! needed as the fifth of the D* triad,
lies almost half way between these two notes, 22 cents higher than A* =2 and

20 cents lower than B!, Other small intervals of little use contain 28, 14,
and 8 cents. This, then, is an example of just intonation carried to an absurd
end.

Doni’s three-manual organ keyboard!! (abacus Triharmonicus) was more
elaborate than any system previously described, with sixty keys in the
octave, but with only thirty-nine distinct pitches. The lowest keyboard was
the Dorian, then the Phrygian, and finally the Lydian. The arrangement of
the notes on each keyboard was identical, and the keyboards were tuned a
major third apart, so that the Dorian E, the Phrygian C, and the Lydian AP
were the same pitch. The tuning was largely just, as can be seen from Table
107, which represents seventeen of the twenty notes on one keyboard.



Table 107. Doni’s Keyboard

B-z F#- 2 C#—! G’-—z D#—'!
D-—l A-I E-1 'B—l
pb® o co G° D°
Gb+! aAb+ gb+:

This arrangement is somewhat lacking in symmetry, and the additional
three notes, which were real quarter tones, were of no use except to illustrate
the scales of the Greeks, this being one of the uses of the organ. The
enharmonic notes were formed, as Didymus formed his, by an arithmetical

division of the syntonic semitone, 16:15, into 32:31 and 31:30 quarter

tones. 12

The nineteenth century was particularly rife with proposals to increase
greatly the number of notes in the octave. Many of the instruments upon
which the inventors practiced their ingenuity were harmoniums, intended for

experimental purposes only. One of the more modest was Helmholtz’s,

already mentioned in Chapter V, with only twenty-four notes in the octave.!’

it followed a suggestion by Euler in 1739 that each manual be in the
Pythagorean tuning, the one manual a comma higher than the other. General
Thompson followed Doni’s lead by having three manuals on his Enharmonic
Organ, with forty different pitches in the octave. Henry Poole’s Euharmonic
Organ had only two black keys on the keyboard; but through a series of
eleven pedals all the notes could be transposed into five sharp and five flat
keys, giving fifty distinct pitches in the octave.

Liston’s organ also relied upon pedals to obtain a great variety of notes
with the minimum number of keys.!* With only twelve keys to the octave,
tuned in just intonation, he was able by means of six pedals to add their
enharmonic equivalents, thus having twenty-four notes in his normal scale.
These are shown in Table 108. Then by three acute pedals all these notes
could be raised in pitch by a comma. Two grave pedals similarly lowered
nine or eleven of the normal notes by a comma. Thus Liston had a total of
fifty-nine pitches available.

Of Liston’s fifty-nine notes, there were ten pairs, such as Db°
which differed by the schisma, 2 cents. Furthermore, Cx— and E*= differed

by only six cents from D! and F**3 respectively, and could be considered

_C#—Z



equivalent pairs also. Thus there were essentially only 47 separate pitches.
These included four larger intervals: between C™! and C*=? and between Cx~
4 and D! there were two commas; between E*! and F*2 and between A"

and B there were three. If these larger intervals had been divided, the
octave would have contained 43 + 2 x 2 + 2 x 3 = 53 commas, which is the
number one might have anticipated. These “commas” are not all the same
size. The ditonic comma does not occur at all except as the sum of the
syntonic comma and the schisma. The syntonic comma is, as is evident from
the scheme of pedals, the most common interval. But intervals of 20 cents,

as D2 -E®°, and of 26 cents, as G -G" 3, also occur.

Table 108. Liston’s Enharmonic Organ

B# -3 Fx™ Cx ™
G#‘i DF.i h:"-i E**-]
A~ E - B~ F*-l C#-I
B’ F? ce G D°
cb‘“ GL'H'" DbH ﬂb"‘l Eh""
Bbhﬂ Fh +2

More ambitious was Steiner’s system.!> For the key of C he used 12
notes in just intonation, symmetrically arranged in three groups of 4 notes
each. But these could be transposed mechanically into any of 12 different
keys, the keynotes being tuned by perfect fifths. Thus there were 144 notes,
but only 45 distinct pitches. Shohe Tanaka adopted Steiner’s idea of having
12 keynotes in Pythagorean tuning, for mechanical transposition. But he
extended his keyboard to 26 different notes, as shown in Table 109. Of the
312 notes to the octave of Tanaka’s “Transponir-Harmonium” or
“Enharmonium,” there were only 70 unduplicated pitches, no more than on
an organ described by Ellis which had a total of 14 x 11 or 154 notes to the
octave, with 70 separate pitches.



Table 109. Tanaka’s Enharmonium
FH C# -2 G#-@ Di- 2 A#- 2 E#-i
G-l D-—l ﬁ-" E-l B—l. F"l C#_I

Bb’ Fo ce G® D° A g
Ggb+ Db +1 ﬁh +1 Eb +1 Bb+1 FH

Equal Divisions

With Tanaka’s Enharmonium we may safely drop the subject of just
intonation extended. The theory is simple enough: provide at least four sets
of notes, each set being in Pythagorean tuning and forming just major thirds
with the notes in another set; construct a keyboard upon which these notes
may be played with the minimum of inconvenience. Only in the design of
the keyboards did the inventors show their ingenuity, an ingenuity that might
better have been devoted to something more practical.

The other direction in which multiple division developed had far greater
possibilities. This was the division of the octave into more than twelve

acoustically equal parts.'® Any regular system of tuning — a system
constructed on a fixed value of the fifth — will eventually reach a point where
its “‘comma,” the error for the enharmonic equivalent of the keynote, is small
enough to be disregarded. Thus we have closed systems that agree more or
less closely with the various types of meantone temperament, etc.

If the Pythagorean tuning is extended to 17 notes, an interval of 66 cents
1s formed —a doubly diminished third, as Ax-C. Divided among 17 notes, the
deficit is about 4 cents, the amount by which each fifth must be raised to
have a closed system. The fifth (now taken as 10/17 octave) contains 706
cents, being raised by about the same amount that it is lowered in the
Silbermann variety of meantone temperament. The major third (6/17 octave)
contains 423 cents, being more than twice as sharp as it is in equal
temperament, and the minor third is correspondingly very flat. If we take 5
parts for the third, this becomes a neutral third of 353 cents, such as the
thirds found in some scales of the Orient.

In the 17-division, the tone is composed of 3 equal parts, of Which the
diatonic semitone comprises 1 part and the chromatic semitone 2 parts. Since
the diatonic semitone, 70 cents, is even smaller than in the Pythagorean



tuning, this system is well adapted to melody. It is, of course, wholly
unacceptable for harmony because of its outsize thirds. It is notated with 5

sharps and 5 flats only, D and A* being considered the equivalent of and CP,
and and DP the equivalent of E* and B¥. The 17-division is the well-known

Arabian scale of third-tones.!”

A much more popular system is the 19-division. It arises in much the
same way as the 17-division, except that, as in just intonation, the diatonic
semitone 1s considered the larger, with 2 parts to 1 for the chromatic
semitone. Since the octave contains 5 tones and 2 semitones, it will have 5 %
3 +2 x 2 =19 parts. The history of the 19-division goes back to the middle
of the sixteenth century, when Zarlino and Salinas discussed, among types of
meantone tuning, one in which the fifth was tempered by 1/3 comma. Like
the other two types (1/4 and 2/7 comma) it was intended for a cembalo with

19 notes to the octave.!® Salinas’ claim as inventor has not been disputed. He
was rather apologetic concerning it, because of its greater deviation from
pure intervals than the other two. He apparently did not realize that this
could not be distinguished from an equal division into 19 parts, and that
thus, as a closed system, it possessed a great advantage. It can be notated

with 6 sharps and 6 flats, being the equivalent of B* and E” of F?
We have plenty of evidence from past centuries of cembali with 19 notes
in the octave, for which this division would have been the ideal tuning.

Zarlino!'® described such a cembalo that Master Domenico Pesarese had
made for him. Elsasz is frequently but erroneously called the inventor of the
19-note cembalo, because his instrument is described in Praetorius’
Syntagma.

After having been neglected during the nineteenth century for the more
elaborate systems such as have been described in the previous section of this
chapter, the 19-division was revived in the second quarter of the twentieth
century. It has had eloquent contemporary advocates in Ariel, Kornerup, and
Yasser. Of all these enthusiasts, Yasser has gone to the greatest pains to show

the construction of the system and its possibilities.?’ He differs radically
from its other adherents, who have proposed it partly for the sake of
differentiating enharmonic pairs of notes, but chiefly because it$ triads are
more consonant than those of equal temperament. Yasser holds that the
harmony of Scriabin and the tone-rows of Schonberg show an intuitive
striving toward the 19-division, since a scale as used should contain unequal
divisions, being a selection from an equal division of more parts. Thus the



Siamese scale of 7 equal parts is suitable for pentatonic melodies; the
ordinary 12-note chromatic scale, for heptatonic melodies; and the 19-
division for melodies built upon the 12-note scale. Yasser’s attempt to give a
historical foundation is so defective that his case emerges considerably
weaker than if he had presented his system simply from the speculative point
of view.

There does not seem to be much chance of the 19-division coming into
use in our day. Its thirds and fifths have been discussed in Chapter III. To
modern ears, accustomed to the sharp major thirds of equal temperament, the
thirds of 379 cents, 1/3 comma flat, would sound insipid in the extreme.
There would seem to be a better chance for the acceptance of a system that
does not differ so markedly in its intervals from our own.

The 22-division belongs next in our study of equal divisions. It was not
discussed by Sauveur, Romieu, or Drobisch. In fact, Bosanquet did not even
mention it in his comprehensive book on temperament, although Opelt had

treated it carefully twenty-five years before.?! But the following year
Bosanquet contributed an article to the Royal Society, “On the Hindoo
Division of the Octave.” In it he referred to S. M. Tagore’s Hindu Music and
an article in Fétis’ Histoire générale. There the Hindoo scale was said to
consist of 22 small intervals called “S’rutis.” If these are considered equal, a
new system arises with “practically perfect” major thirds (actually,being
381.5 cents, theyare almost 5 cents flat) and very sharp fifths (709 cents, or 7
cents sharp). Riemann later was to include the 22-division in his discussion
of various systems, and it is frequently mentioned today. Unfortunately, the
Hindoo theory does not make the S’rutis all equal, but that does not prevent
the division from finding an honored place among these others.

The thirds of the 22-division are better than those of the 19-division, and
its fifths are no worse. However, it is not so good a system for the
performance of European music. The difficulty lies in the formation of the
major third. The fifth is taken as 13/22 octave, whence the tone has 4 parts
and the ditone, 8. But 8/22 octave is 436 cents, an impossibly high value.
Hence the major third must be only 7 parts, or 381.5 cents. This means that

D" is taken as the major third above C, and F® (or Cx) as the third above B.
This is an awkward feature, but one that we shall run into with most of these
equal divisions. It is not ordinarily possible to retain our ideas of tone

relations while making a division of the octave that will provide good fifths
and thirds.



The 24-division has the same good fifths and sharp thirds as the 12-
division, and the deviations for the 29-division are very similar, but with
plus and minus signs reversed. Both the 25- and the 28-divisions have good
thirds and quite poor fifths. So none of these four divisions is of great
import. The 24-division does have its place, as a possible realization of
Aristoxenus’ theory that the enharmonic diesis is a true quarter tone, the half

of the equal semitone. Kircher??> presented it as such, together with a
geometrical method of obtaining the quarter tones on the monochord.

Rossi?? later gave the stringlengths for equal quarter tones, and Neidhardt

offered a similar table many years afterwards.?* The 29-division has its place
as a member in the series that contains the 17-division, but that fact does not
improve the quality of its thirds.

The next system of importance is the 31-division. It is the most ancient
of them all and well worth the attention that has been given to it. Observe
that 31 logically follows 19 in the Fibonacci series: 5, 7, 12, 19, 31, 50, 81, .

... This system was first described by Vicentino® in 1555, as the method of
tuning his Archicembalo. In theory this was constructed in an attempt to
reconcile the ideas of the ancient Greeks with those of sixteenth century
practice. In reality it was a clever method for extending the usual meantone
temperament of 1/4 comma until it formed practically a closed system.

The Archicembalo contained six ranks of keys, of which the first two
represented the ordinary harpsichord keyboard with 7 natural keys, 3 sharps,
and 2 flats. The third “order” contained 4 more sharps and 3 flats. The fourth
order continued the flat succession with 7 more keys, and the fifth added 5
more sharps. (The sixth order is in tune with the first.) Thus all the notes
would lie 1n a succession of fifths from to Ax, and the circle would be

completed by taking Ex as equivalent to GP® or CP to Ax. (Vicentino
himself gave a second tuning to the fourth order that showed that he
considered the above to be equivalent pitches.)

Vicentino specified that the first three orders of the Archicembalo should
be tuned “justly with the temperament of the flattened fifth, according to the
usage and tuning common to all the keyboard instruments, as organs,
cembali, clavichords, and the like.” But the other three orders may be tuned
“with the perfect fifth” to the first three orders. For example, the G of the

fourth order (that is, AP) is to be a perfect fifth above the C of the first
order. It must be admitted that this part of Vicentino’s scheme does not seem
to make sense.



If we ignore this puzzling doctrine of the perfect fifth, we have a logical
system, formed by a complete sequence of 31 tempered fifths. The amount
of tempering is not specified, but was to be the same as that of common
practice. The common practice was the ordinary meantone temperament, in
which major thirds are perfect. This is undoubtedly what Vicentino used.

By logarithms Christian Huyghens?® showed that the 31-division does
not differ perceptibly from the 1/4-comma temperament. More specifically
he said: “The fifth of our division is no more than 1/110 comma higher than
the tempered fifths, which difference is entirely imperceptible; but which

would render that consonance so much the more perfect.” Riemann?’ was
confused by this remark, not realizing that Huyghens meant that this fifth
was 1/110 comma higher than afifth tempered by 1/4 comma. The difference

between the logarithm of the meantone fifth, .174725011, and that of 2183 g
1757916100, is .0000491089, which is quite close to 1/110 of the logarithm
of the syntonic comma, .0053951317.

Tanaka®® and Riemann have described Gonzaga’s harpsichord in the
Museo Civico in Bologna, dated 1606. Essentially the same as Vicentino’s
instrument, its arrangement of notes is somewhat different, the second row,
for example, consisting solely of sharped notes, instead of 3 sharps and 2
flats. Father Scipione Stella’s eight-manual harpsichord also resembled

Vicentino’s, but had a couple of manuals duplicated to facilitate the

execution.?’

An improved version of Vicentino’s Archicembalowas Colonna’s 6-
manual Sambuca Lincea.’? The difficulty with Vicentino’s system was the
unsystematic arrangement of the second and third orders. Both C* and EP,

for example, were in the second order, while DP and D* were in the third. If
the instrument was to be considered merely an extension of an ordinary
cembalo with twelve notes in the octave, such an arrangement was no doubt
good enough. But, for its complete possibilities to be available, any such
instrument needs what Bosanquet called a “generalized keyboard.”

Colonna came close to supplying this lack. Each of his orders contained
seven notes, and was 1/5 tone above the preceding order. In our notation, the

notes between C in the first order and D in the sixth would be D, C¥, Db
and Cx. Colonna’s notationfor them was Cx, C*, DY, and C#, respectively.

This is very clumsy; but his idea of the division was entirely correct, as can
be seen from the scales he listed as examples of the capabilities of the



instrument. He included such remote major keys as C°, A#, E®® and G* — all
of course with his peculiar notation.

The germ of the 31-division lay in the contention of Marchettus of Padua
that a tone could be divided into five parts. After Vicentino, Salinas and Mer

senne discussed the system without realizing its value. Hizler’! referred to a
31-note octave, but used in practice only 13 notes, having both a D* and an

E’. Rossi®>? anticipated Huyghens in obtaining by logarithms the string-
lengths for the 31-division, but did not call attention to the fact that its
pitches were so close to those of the meantone temperament which he also
presented. (With A at 41472, his meantone E was 27734, the 31-division E,

27730.) Gallimard®® was to follow Huyghen’s lead in comparing the

logarithms of the two temperaments. Van Blankenburg>* was to use the 31-
division as a sort of tuning measure, much as Sauveur used the 43-division
and Mercator the 53-division. According to van Blankenburg, Neidhardt’s
equal temperament was full of “young wolves, each 1/3 of the large wolf,”
because the major third of equal temperament contains 10 1/3 parts instead
of the 10 parts of the 31-division.

The string-lengths for the 31-division were also given by Ambrose

Warren,>> for the octave 8000.0 to 4000.0. Warren showed how this
temperament could be applied to the fingerboard of the violin, for a string 13
inches long.

For obtaining the 31-division mechanically, Rossi recommended the
mesolabium. Salinas, Zarlino, and Philander have stated that the mesolabium
could be used for finding an unlimited number of geometrical means
between two lines, provided the number of parallelograms was increased
correspondingly. Perhaps so, but Rossi*® was undoubtedly correct in saying
that “in dividing the octave into 31 parts you will experience greater
difficulty because of the great number of rectangles,” and Mersenne®’ said
flatly that it “is of no use except for finding two means between two given
lines.”

Romieu® included the 31-division among those for which he had
obtained correspondences, calling it a temperament of 2/9 comma. This is
not very close, for 1/4 — 1/110 = 53/220. (Drobisch’s 74-division is the real
2/9-comma temperament.) It is possible that writers before Romieu had this
tuning in mind when they wrote about the 2/9-comma temperament.

Printz,3° for example, spoke of a “still earlier” temperament that took 2/9

3



comma from each fifth. Earlier, perhaps, than Zarlino’s 2/7 comma, which
he had been discussing previously. But Lemme Rossi, who gave a detailed
treatment to the 2/9-comma tuning, did not identify it with the 31-division.

The 34-division is a positive system, like the 22-division. That is, its fifth
of 706 cents is larger than the perfect fifth, being the same size as for the 17-
division. Its third is about 2 cents sharp. Thus it provides slightly greater
consonance than the 31-division. But, like the 22-division, it has remained
one of the stepchildren of multiple division, largely because it is in a series
for which ordinary notation cannot be used. There is a surprising mention of
the 34-division by Cyriac Schneegass in 1591 (see Chapter III), but his own
monochord came closer to the 2/9-comma division. Bosanquet had indicated
the relation between the 22- and 34-divisions, and had praised the 56- and
87-divisions also as similar systems. Opelt, too, has included it in his fairly
short list.

The 36-division has little to recommend it, although its string-lengths
were worked out by Berlin,*” and Appun and Oettingen both found it worth
describing.*!

The 41-division has excellent fifths (702.4 cents), but thirds (380.5) that
are almost six cents flat, being in this latter respect inferior to the 31- and 34-
divisions. It occurs in a worthy series: 12, 17, 29, 41, 53,.... This system was
not singled out by any of the earlier writers, but received considerable
attention from such nineteenth century theorists as Delezenne, Drobisch, and

Bosanquet. Paul von Janko*? set himself the task of ascertaining the best
system between 12 and 53 divisions, and chose the 41-division. Rather
naively, he concluded he had discovered this system, since Riemann had not
mentioned it!

The 43-division is associated with the name of Sauveur,*> who used its
intervals (Merides) as a unit of musical measure. The Merides were divided
into seven parts called Eptamerides. For more subtle distinctions, Sauveur
suggested using Decamerides, 10 of which comprised one Eptameride. But
he did not use the Decamerides in practice. Thus there were 43 x 7 = 301
Eptamerides in the octave, or 3010 Decamerides. Since .30103 is the
common logarithm of 2, it is possible to convert directly from logarithms to
Eptamerides by dropping the decimal point and all but the first three digits
of the logarithm.

The 43-division is a closed system approximating the 1/5- comma
variety of meantone temperament, which, as we saw in Chapter 111, had been



mentioned by Verheijen and Rossi. Its thirds and fifths have an equal and
opposite error of slightly over four cents, thus making it somewhat inferior
to the 34-division, although the equality of the error may have some weight
in ranking the two systems. Since 43 is a number occurring in a useful series
for multiple division — 12, 19, 31, 43, 55,... — this division was treated by
Romieu, Opelt, Drobisch, and Bosanquet.

The 50-division need not detain us long. It may be thought of as an
octave composed of ditonic commas, since 1200 + 24 = 50. It was advocated

by Henfling in 1710 and criticized by Sauveur** the following year. A
century later Opelt was to mention it. Bosanquet has included it as a member
of the series: 12, 19, 31, 50, . . . . This division shows no improvement over
the 31-division. Its fifths have about the same value as those of the latter,

and its thirds are flatter than the latter’s were sharp. Kornerup®® has waxed
lyrical in its praise, as a closed system corresponding to Zarlino’s 2/7-
comma meantone temperament. He showed that the value for Zarlino’s
chromatic semitone (70.6724 cents) came very close to the mean of the
chromatic semitones for the 19- and 31-divisions (70.2886), and might have
added that this similarity extends throughout, since all three are regular
systems. He found that the greatest deviation of the 2/7-comma tuning from
the 50-division is a little over three cents, and 1s much less for most notes.
We shall have more to say later about the special part of Kornerup’s theory
that has caused him to overvalue this system.

The most important system after the 31- is the 53-division. In theory it is

also the most ancient. According to Boethius,*® Pythagoras’ disciple
Philolaus held that, since the tone is divisible into minor semitones and a
comma, and since the semitone is divisible into two diaschismata, the tone is
then divisible into four diaschismata plus a comma. If, now, the diaschisma
is taken as two commas exactly, the tone is divided into nine commas. (Note
what was said about the ditonic comma in connection with the 50-division.)

This dictum about the number of commas in a tone was one of the most
persistent parts of the Pythagorean system. Writers in the early sixteenth
century sometimes mentioned the fact that there are nine commas in a tone,
without giving any other tuning lore. They probably included, however, the
statement that the diatonic semitone contains four commas, the chromatic
semitone, five. Amusingly enough, after just intonation became the ideal,
writers continued to talkabout commas; butnow itwasthe chromatic semitone
that contained four commas, the diatonic semitone, five.



Since the Pythagorean diatonic semitone contains 90 cents, and the
chromatic, 114, their ratio is 3 3/4:4 3/4, or approximately 4:5. Similarly, if
we choose the larger just chromatic semitone of 92 cents and the smaller just
diatonic semitone of 112 cents, the ratio will be 4 1/2:5 1/2, or, again, 4:5.
But the ratio might be taken as 5:6, giving rise to the 67-division discussed
below. The comma, taken as 1/9 Pythagorean tone, would have a mean value
of 22.7 cents, lying between the syntonic and the ditonic commas.

If there are 9 commas in a tone, the octave contains 5 X 9 + 2 x 4 = 53
commas — provided we are thinking in terms of the Pythagorean tuning. If
we are thinking in terms of just intonation, with a large diatonic semitone,
there will be 5 x 9 + 2 x 5 =55 commas. Thus the 55-division has received
attention also.

There are several advantages to the 53-division. Its fifths are practically
perfect (.1 cent flat), so that it is unnecessary to use a monochord for tuning.
Its thirds are very slightly flat (1.4 cents). However, since it is a positive
system, with fifths sharper than those of equal temperament, the pure major

third above C is F?, with 17 parts, whereas C-E represents the Pythagorean
third, with 18 parts. This would be confusing to the performer.

After the time of the Greeks, the history of the 53-division takes us to
China, where the Pythagorean tuning had been known for many centuries,
probably since the invasion of Alexander the Great. In 1713 it was
confirmed as the official scale, however widely instrumental tunings may
have differed from it in practice.

One of the most remarkable of the early Chinese theorists was King
Fang, who, according to Courant,*’ “calculated exactly the proportional
numbers to 60 1ii,” that 1s, he extended the Pythagorean system to 60 notes.
These results were published by Sefz-ma Pyeoiz, who died in 306 A. D.
King Fang observed that the 54th note was almost identical with the first
note. Courant’s figures are 177, 147 for the first; 176, 777 for the 54th.

Seventeenth century European theorists who referred definitely to this
system include Mersenne and Kircher. Tanaka mentioned Kircher’s name in
this connection, thus differing from the majority of his contemporaries, who
ascribed the system to Mercator. According to Holder,*® Nicholas Mercator
had “deduced an ingenious Invention of finding and applying a least
Common Measure to all Harmonic Intervals, not precisely perfect, but very
near it.” This was the division into 53 commas. There is no evidence, in



Holder’s account, that Mercator intended this system to be used on an
instrument. It was to be merely a “Common Measure.”

Of 25 systems that Sauveur discussed, only two, the 17- and 53-
divisions, were positive. He was unable to appreciate the splendid value of
the thirds of the latter, since, according to his theory, its thirds would have to
be as large as Pythagorean thirds. Romieu did not even mention this system.
Drobisch, too, did not at first (1853) appreciate the 53-division, discarding it
because of its sharp thirds. But two years later he re-evaluated both the 41-
and the 53-divisions, showing that a just major scale could be obtained with
them by using C D F® G B® Cb C.#°

The stage was thus set f or Bosanquet’s detailed study of multiple
division, which culminated in his invention of the “generalized keyboard”
for regular systems. In his article in the Royal Society’s Proceedings, 1874—
75, Bosanquet gave a clear and comprehensive treatment of regular systems,
both positive and negative, with a possible notation for them. He showed
how various systems could be applied to his keyboard, especially the 53- and
118-divisions. In his symmetrical arrangement, 84 keys were needed for the
53 different notes in the octave. Obviously, then, Bosanquet’s name should
be singled out for especial mention, since he applied the system to an
enharmonic harmonium and did not simply discuss it as his predecessors had
done.

As has been noted above, the 55-division is the negative counterpart of
the 53-division, thus having the advantage that ordinary notation can be
used. That is its only advantage, for its fifths (698.2 cents) are no better than
those of the 43-division, and its thirds (392.7 cents) are inferior to the
latter’s. Sauveur devoted considerable space to this system, saying it was
“followed by the musicians.” This is a reasonable statement, for this system
corresponds closely to the 1/6-comma variety of meantone temperament
favored by Silbermann. Thus we have confirmation from France of the
spread of this method.

Romieu showed the correspondence between the 55-division and the 1/5-
comma tuning, and adopted the latter for his “temperament anacratique.”>°
He referred to Sauveur, and also to Ramarin’s system as given in Kircher.
Mattheson®! presented this division from Johann Beer’s Schola phonologica,
saying that it required “that an octave should have 55 commas, but no major
or minor tones.”




Sorge, after disapproving of the ordinary 1/4-comma meantone,
continued: “I am better pleased by the famous Capellmeister Telemann’s

system of intervals, in which the octave is divided into 55 geometrical parts

(commas), that grow smaller from step to step.”>> Sorge explained that in its

complete state it could not be used on the clavier; but it might be applied to
the violin and to certain wind instruments, and was easiest for singers.

William Jackson’? found that the octave consists of 55 10/12 syntonic
commas, or 670 units of 1/12 comma. He might well have assumed the
octave to contain 56 commas precisely, since this is a fairly good division. A

half century after Jackson, an anonymous work printed in Holland>* stated
that the ratio 81:80 is contained 56 times in the octave, but did not advocate
this as a system of multiple division. Bosanquet mentioned the 56-division.
It has excellent thirds, being 1 cent flat, as in the 28-division. Its fifths are 5
cents sharp.

The 58-division is also positive, its fifths being 2 cents sharp, as in the
29-division, and its thirds being 7 cents sharp. This is the division that is at

the base of Dom Bedos’ temperament,> although he chose the pitches for
his monochord somewhat irregularly from it.

There are only a few other systems that should be mentioned. The 65-
division has splendid fifths (.5 cent flat) and slightly sharp thirds (1.4 cents
sharp). The 84-division, on the other hand, has only average fifths (2 cents
flat), but excellent thirds (.6 cent flat). The 87-division has slightly sharp
fifths (1.4 cents sharp), and practically perfect thirds (.1 cent flat). The 118-
division has both fifths and thirds that are superlative (.5 cent flat and .2
sharp respectively).

The above four systems excel all others with more than 53 parts in the
octave. But the specialists in multiple division have not always appreciated
them. Sauveur, for example, discussed the 67-, 74-, 98-, 105-, 112-, and 117-
divisions, as well as others that are no better than they, but did not mention
any of the four systems in the previous paragraph. Romieu did not discuss
any systems beyond the 55-division, butwould have approved the 67-, 79-,
and 91-divisions. Drobisch particularly favored the 74-di- vision among
systems that formed the major third regularly, as C-E; among those that used
C-F® as a major third, he mentioned the 65-, 70-, 77-, 89-, and 94-divisions,
and found the 53- and 118-divisions best of all. Bosanquet, praising most
highly the 53- and 118-divisions, had kind words for the 56-, 65-, and 87-
divisions also.



Theory of Multiple Division

The reason for the divergent results obtained by these theorists is that
each had a different theory regarding acceptable divisions of the octave.
Sauveur, although he did list two positive systems, had no real understanding

of divisions in which C-F® could be a major third. To him, the diatonic
semitone was the larger: the problem of temperament was to decide upon a
definite ratio between the diatonic and chromatic semitones, and that would
automatically give a particular division of the octave. If, for example, the
ratio is 4:3, there are 5 X 7 + 2 x 4 =43 parts; if 5:4, thereare 5 x 9+ 2 x 5 =
55 parts. We have pointed out above that only the first of these divisions is at
all satisfactory. Let us see what the limit of the value of the fifth would be if
the (n + 1):n series were extended indefinitely. The fifth is (7n + 4)/(12n + 7)
octave, and its limit, as n —oo, is 7/12 octave; that is, the fifth of equal
temperament. The third, similarly, approaches 1/3 octave. Therefore, the
farther the series goes, the better become its fifths, the poorer its thirds. This
would seem, then, to be an inferior theory.

In other divisions listed by Sauveur the difference between the two sizes
of semitone was two, three, or even four parts. Here, again, the fifth
eventually comes close to 7/12 octave and the third to 3/12 octave. Romieu
followed Sauveur’s theory. To an extent so did Bosanquet. But the latter
added the theory of positive systems. The primary positive system is 17, 29,
41, 53, 65,77, 89, . ... Here the fifth can be expressed as (7n + 3)/ (12n + 5)
octave. Just as in the negative systems above, the limit of this ratio 1s 7/12
octave. For the 53- and 65-divisions the fifths are practically perfect; the
thirds of these divisions have approximately equal, but opposite, deviations.
This suggests a secondary positive system, the mean between the former
two: 118, with both fifths and thirds well-nigh perfect. But there is nothing
in these series themselves to facilitate choosing the best division or the two
best. That had to be ascertained by comparing the intervals in the various
divisions after they had been chosen. Again it would seem as if there were
an arbitrary factor present.

We have already spoken of Kornerup and his fondness for the 50-

division.’® His “golden” system of music was suggested by a study made by
P.S. Wedell and N. P. J. Bertelsen in 1915. By the method of least squares
they obtained the following octave series in which both the major third (5:4)
and the augmented sixth (that is, the minor seventh, 7:4) approach their pure
values: 3, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, . . . . These of course are



“golden” numbers, the law of the series being
S‘n_l +Sn_2. ASHHW, Sn _* 5"'1 . .
.. —9  ratio which
Snt
Kornerup called go. It 1s this ratio which is used in the golden section of a
line, where (1 - w )/w = @, and which Kornerup used as the basis of his
tuning system. By rather simple arithmetic we find that the golden fifth is
(15 - A[5)/22 octave, or 696.2144738 cents. The golden third is 384.8579

cents, only a fair approximation, since the pure third is 386.3137 cents.
Therefore, even if the series is continued indefinitely, the fifth will never be
less than about 6 cents, nor the third than 1.5 cents flat. Since we have
already observed several systems with better thirds and fifths than this, it
would seem as if the golden system is an ignis fatuus.

Drobisch®’ gave an interesting formula which combined Bosanquet’s
primary and secondary positive systems. The fifth of these systems will be:
(7n —1)/2(6n — 1). For odd values of n, the octave contains 6n — 1 parts; for
even values, twice as many. Hence he obtained the series (with n ranging
from 4 through 15) : 46, 29, 70, 41, 94, 53, 118, 65, 142, 77, 166, 89.

Somewhat more general was Drobisch’s attempt to find a division of the
octave that would insure a good value for the fifth. He expressed the ratio of
the fifth (log 3/2) to the octave (log 2) as a decimal, .5849625, or as a
fraction, 46797/80000. From this ratio, by binary continued fractions, he
obtained the series 2, 5, 12, 41, 53, 306, 665, [15601], . . . . Next he found all
the powers of 3/2 from the 13th to the 53rd, in order to ascertain which
approach a pure octave. This should have checked closely with his previous
list, to which 17 and 29 would be semi-convergents. This, however, is his
complete list: 17, 19, 22, 29, 31, 41, 43, 46, 51, 53. Having eliminated all
positive divisions (those with raised fifths), he still had 19, 31, and 43 to add
to his previous list.

Although the 50-division did not appear on either list, Drobisch
anticipated Kornerup by showing that its fifth lies almost exactly between
the fifths of the 19- and 31-divisions. After these promising beginnings, he
went off at a tangent by trying to find, by least squares, the value of the fifth
that would produce the best values for five different intervals. Then, again
using continued fractions, he found that successive approximations to this
value (.5810541) form the series: 2, 5, 7, 12, 31, 74,.... This is why the 74-
division had an especial appeal for him.



Drobisch’s continued fractions were the first really scientific method of
dividing the octave with regard to the principal consonances, the thirds and
the fifths. The difficulty with it is that there are three magnitudes to be
compared (third, fifth, and octave), but only one ratio (third to octave, fifth
to octave, possibly third to fifth) can be approximated by binary continued
fractions. If we must choose a single ratio, it is better to use that of the fifth
to the octave, as Drobisch did, since the third may be expressed in terms of
the fifth. But the usual formula, T = 4F — 20, is valid only through O = 12.
We have already noted that as fine a musical theorist as Sauveur failed to
appreciate the 53- division, since he used the above formula and obtained a
third that was one part large. Since the syntonic comma is about 1/56 octave,
this formula will fail to give a correct number of parts for the third for any
octave division greater than 28. Thus if O = 41, and F = 24, the formula
makes T =4 x 24 — 2 x 41 = 14, whereas the correct value is 13. If O = 665,
and F = 389, T =4 x 389 — 2 x 665 = 226, instead of 214. Knowing the

value of the comma, we can correct our formula to read: T = 4F — 20 — [50_E'|]

But even this would only by accident give a value for the third with as small
a deviation as that for the fifth in the same division«, What is needed is a
method that will approach the just values for third and fifth simultaneously.

The desired solution can be obtained only by ternary continued fractions,
which are a means by which the ratios of three numbers may be
approximated simultaneously, just as the ratios of two numbers may be
approximated by binary continued fractions. When the ordinary or Jacobi
ternary continued fractions are applied to the logarithms of the major third
(5:4), perfect fifth (3:2), and octave (2:1), the octave divisions will be: 3, 25,
28,31,87,817,....

There are two serious faults in these results. In the first place, the
expansion converges too rapidly, and we are interested chiefly in small
values, those for which the octave has fewer than 100 parts. In the second
place, the first few terms are foreign to every other proposed solution, such
as those by Sauveur and Drobisch on previous pages.

To insure slow convergence, a mixed expansion was evolved, which
yields the following excellent series of octave divisions: 3, 5, 7, 12, 19, 31,

34, 53, 87, 118, 559, 612,, . . .°® Theonly serious omission is the Hindoo
division, with 22 parts in the octave, The last term shown above (612) was



said by Bosanquet to have been considered very good by Captain J.
Herschel.

There i1s no record that Captain Herschel ever constructed an
experimental instrument with 612 separate pitches in the octave. Even if he
had done so, it would have been a mechanical monster, incapable of
producing genuine music at the hands of a performer. With the possible
exception of the 19- and 22-divisions, the same can be said of all these
attempts at multiple division. Bosanquet’s 53-division apparently was a
success on the harmonium he constructed with the “generalized keyboard.”
But it, too, was cumbersome to play, and would have been very expensive if
applied to a pipe organ or piano. Thus the mathematical theory, worked out
laboriously by ternary continued fractions, remains theory and nothing more.
The practice for the past five hundred years has favored almost exclusively
systems with only twelve different pitches in the octave. There seems no
immediate prospect of that practice being discarded in favor of any system
of multiple division.
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Chapter VII. IRREGULAR SYSTEMS!

If we accept Bosanquet’s definition that a “regular” tuning system is one in
which every fifth, or every fifth save one, has the same value, this would
include the Pythagorean tuning, equal temperament, and the several varieties
of the meantone temperament, as well as equal divisions with more than
twelve notes in the octave. With the addition of just intonation, it would
seem as if this covered the ground pretty thoroughly. There are, however, a
great many tuning systems that do not fall into any of the above- mentioned
classes. At first glance these irregular systems present a bewildering variety.
But some of them have been offered by their sponsors as modifications of
existing tuning systems, and others, although not so designated, are also
closely related to regular systems. In fact, it is possible, by making the
bounds sufficiently elastic, to fit every one of these irregular systems into
one or another of certain subclasses. So that, unless we retain Bosanquet’s
strict definition, there is no such thing as an irregular system — one that is
wholly a law unto itself!

Our first group of irregular temperaments consists of modifications of
the meantone temperament. The meantone wolf fifth is 35 cents sharp. The
simplest modification of this temperament is to divide this excess equally

between the fifths C*-G* and G(AP)-E® (see Table 110). This is the
modification generally, but erroneously, ascribed toSchlick, and, according

to Ellis, still in use in England in the early nineteenth century. The G* now
almost a comma sharper than in the pure 1/4-comma temperament. The
mean deviation is noticeably lower, but the standard deviation is affected
less.

Table 110. Meantone Temperament with Two Sharp Fifths

Names cc* p E® E F F 6 o' A BY =B C
Cents 0 76 193 310 386 503 579 697 793 BBO 1007 1083 1200
MD. 17.2, 8D. 18.%



Mersenne has included a discussion of the meantone temperament with
all his other tuning information. His account differs slightly in the different
works where it occurs. In the Harmonie universelle (pp. 364 f.) he had made

the fifths EP-BP-F perfect. In the Cogitata physico-mathematica (p. 338) he
asked the reader to correct the “obvious errors” in the previous description.

Here he indicated simply that the wolf fifth will be G*-EP. Perhaps his real
intent is to be found in Harmonicorum libri XII (p. 60), where these two
fifths are to be sharp, but not so sharp as the wolf fifth, which is still
unusable. Mersenne said that the meantone fifth is tempered “1/136, which
is about 1/4 comma.” This is a gross misstatement, for the ratio given is
larger than 1/2 comma. He probably meant 1/316, which is a reasonably
close value.

Mersenne’s improvements upon the regular meantone temperament are
worth showing, even if the second will be only an approximation to what he

had in mind. In the first temperament (Table 111) the fifths EP-B® and B-F
are pure. For the second (Table 112), note that the excess of the minor third

G*(AP)-F over the third of equal temperament is 30 cents. Let us divide this

excess so that G*-EP bears only half of it, the other two fifths one-quarter
each.

Table 111. Mersenne’s Improved Meantone Temperament, No. 1

Names cc* D Eb 8 r ¥ ¢ ¢t A BYU B C
Cents O 76 193 299 386 503 579 697 773 890 1001 1083 1200
M.D. 17.% S.D. 17.1

Table 112. Mersenne’s Improved Meantone Temperament, No. 2

Names CCct D EP E P ™ G Gf A BP B C
Cents 0 76 193 268 386 503 579 €97 1773 890 996 1083 1200
M.D. 15.3; S.D. 16.9

In Mersenne’s first improved meantone system, the mean deviation is no
lower than for the temperament previously shown; but the standard deviation
is lower because more notes are involved in the change. Mersenne’s second



improvement was the pattern for a modification recommended by Rameau.
Now Rameau is noted chiefly in tuning history for his advocacy of equal
temperament. But he vacillated sufficiently in his adherence to it to follow
Huyghens in acclaiming as “the most perfect of all” temperaments that in

which “the fifth is diminished by the 1/4 part of a comma.””> But he was
aware of the pitfalls of the meantone temperament; for he showed that, if the

tuning is begun on C, G* will be a “minor comma,” 2025/2048 too flat. The
remaining fifths, therefore, should be tuned “more just,” “to regain the minor

comma that has been lost.” It would be even better to begin with C*, in order
to spread the discrepancy over more notes.

This account sounds as if the excess should be divided equally among
the last five fifths. But, in a later paragraph, Rameau declared that ‘“the
excess of the last two fifths and of the last four or five major thirds is
tolerable, not only because it is almost insensible, but also because it is
found in modulations little used.” Apparently the first three of the five fifths
are not to be so sharp as the final two fifths. Still later he recommended that

“the division begin on BP, and only those fifths that follow B-F* should be a
little more just.”

These directions are as vague as Mersenne’s. In Table 113 the division is
begun on B® as Rameau suggested. The fifths from B to G” have been made
pure, and the excess has been divided equally between G*-D* and EP-BP.

Before considering a final, complicated modification of the 1/4-comma
temperament, let us look at William Hawkes’ improvement upon the 1/5-
comma temperament. This resembles Mersenne’s first modification. In it,
according to John Farey,? “each ascending fifth is flattened by one-fifth of a
comma as the instrument is tuned, except that the fifth above EP and the fifth
below G” are directed to be tuned perfect.” Farey continued: “... but why
these anomalies in the system are introduced I am at a loss to guess,
especially as G” is thereby made 1/5 comma the worse by it.” Hawkes’
reason is perfectly valid — to diminish the wolf fifth by 2/5 comma, although
it will still be 16 cents sharp. The alteration results in a somewhat smaller
deviation than for the pure 1/5-comma temperament.



Table 113. Rameau’s Modified Meantone Temperament

Names cc* D p¥ E F ¥ ¢ 6* A B B ¢
Cents 0 67 193 208 386 503 585 697 789 890 1007 1083 1200
M.D. 12.6; S.D. 14.0

The most involved of all these temperaments was that of J. E.

Gallimard,* who brought a knowledge of logarithms to bear upon the
problem, in order to obtain a subtly modified meantone temperament. He
expressed intervals for all the principal tuning systems in Sauveur’s
Decamerides — four-place logarithms without the decimal point. The first of
his original temperaments used the values of the 1/4-comma temperament

for the eight notes from BP to B. If Gallimard had continued in this fashion

until the entire octave had been tuned, the final fifth (D*-BP) would have
borne the usual wolf, amounting to 103 Deca. He split up this error by
adding an ever-increasing amount to each logarithm for the five fifths from

B to A”. Thus there would be a total of 1 +2 + 3 + 4 + 5 = 15 parts to be
divided into 103 Deca., or about 7 Deca. for each part. In cents, this means
that the first seven fifths have a value of 696 or 697 cents each, the others
699, 702, 705, 708, 710 cents respectively. Gallimard has pure thirds in all
the principal triads of the keys of Fand C, and the poorest thirds in the key of

GP. The third on G itself has 425 cents, practically a diesis sharp!

In Gallimard’s second temperament, the first eight notes were tuned as in
the previous temperament. But he distributed the error among the other five
fifths, proportional to the series 1, 3, 6, 10, 15; that is, to the series n(n—1)/2.
The cents values for these altered fifths are 698, 700, 704, 708, and 714.
Here the worst fifths are worse than in his first temperament, and this error is

reflected in a slightly higher deviation. His worst third, GP-BY, is still a diesis
sharp.

The deviations are still large for Gallimard’s modification. Had he been
willing to use a modification of the 1/6-comma temperament, with slightly
sharp diatonic thirds, his system would have been better. Modifications of
the latter temperament are to be found later in this chapter, by Young and
Mercadier.

Arnold Schlick’s temperament® deserves special honor, for apparently he
was the first writer in any country to describe a temperament for each note of



the chromatic octave. Shoh¢ Tanaka and Hugo Riemann have broadcast the
erroneous idea that Schlick founded the meantone system. The former spoke

of the “exact instructions” that Schlick had given, and added, “In exact

language this will mean that each fifth is to be flattened by 1/4 comma.”®

This reads well, but is utter nonsense with relation to what Schlick actually
said. In place of “exact instructions” he gave very indefinite rules that create
a problem for us.

Beginning with F on the organ manual, the fifth F-C is to be somewhat
flat. This same rule is to be followed in tuning the other “claves naturales”
by fifths, making the octaves perfect. As to the major thirds, Schlick said
that “although they will all be too high, it is necessary to make the three
thirds C-E, F-A, and G-B better,... as much as the said thirds are better, so

much will G* be worse to E and B.”
The tuning of the black keys is to be made similarly, tuning upward by

flat fifths from B to obtain F# and C*, and tuning downward from F to obtain
B and EP. The semitone between G and A received special attention. As G*

it was needed as the third above E; as AP it was also needed as the third
below C. So Schlick suggested a mean value for this note, directing that the

fifth AP-EP is to be somewhat larger than a perfect fifth.

Whatever Schlick’s system, it could not have been the meantone system
as described so carefully by Tanaka; for it lacks pure thirds. Schlick said
definitely that “all will be too high.” Not even the diatonic thirds are to be
pure, only made “better than the rest.”

What, then, was Schlick’s tuning method? All that can be said with
assurance is that it was an irregular system, lying somewhere between
meantone and equal temperament. We cannot hope to reconstruct it exactly;
but it will be worth while to give some idea, at least, of what it was like. Let
us assume that Schlick used the same size of tempered fifth for each of the
six diatonic fifths; a somewhat larger, but still flat, fifth for the four

chromatic fifths; and a sharp fifth for the two fifths AP-EP and C*-G*. Call
these temperaments x, y, and -z respectively. Then, since the ditonic comma
must be absorbed in the course of the tuning,

6x + 4y — 2z = 24 cents.

Now x is larger than y; let us assume that x = 2y. Since Schlick said that
most of his fifths were to be “somewhat” flat and the other two fifths



“somewhat” sharp, let us assume that x = z. Then
12y + 4y — 4y = 24 cents, y = 2 cents, x = z =4 cents.

Thus Schlick’s diatonic fifths, of 698 cents, will be tempered by 1/6 comma;
his chromatic fifths, of 700 cents, will be the same size as those in equal
temperament; his two sharp fifths will be of 706 cents. His diatonic thirds

will be six cents sharp; his chromatic thirds, 8 or 10 cents; the thirds E-G*
and AP-C, 18 cents (not unbearable); and the “foreign” thirds, B-D¥, F*-A*,

and DP-F, 26 cents, slightly more than a comma.

The deviations for Schlick’s hypothetical temperament are less than half
as large as those for the modified meantone temperament that Tanaka
wrongly ascribed to him — the first temperament in this chapter. His is a
good system, holding its own in comparison with systems that were
proposed two or three centuries later. Of the irregular systems discussed in
the first section of this chapter, Schlick’s is superior to Mersenne’s,
Rameau’s, Hawkes’, and Gallimard’s.

Even so, Schlick’s system is not so good as that of Grammateus, next to
be discussed. Therefore we must not assume that the present reconstruction
has erred on the side of Schlick. As a temperament, it has far greater
significance for us than if it had been the meantone temperament, with two
sharp fifths. It is an indication that in the early sixteenth century organ
temperament was nearer to equal temperament than it generally was for
centuries after this time. Schlick’s directions have the added weight that they
represent the practice of an actual organist, unconcerned with mathematics
or the theories of the ancient Greeks.

Modifications of Regular Temperaments

In the next main group of irregular temperaments the diatonic notes are
tuned according to one of the well-known regular temperaments and then
each tone is divided equally to form the chromatic notes. The oldest and best

of them was that of Henricus Grammateus,’ or Heinrich Schreyber of Erfurt.
Grammateus tuned the diatonic notes of his monochord according to the
Pythagorean ratios. But when it came to the black keys, the “minor
semitones,” he followed a different procedure. These were formed by
dividing each tone into two equal semitones by the Euclidean method for



finding a geometric mean proportional. Grammateus had a figure to illustrate
the construction. Perhaps he obtained this method of halving intervals

directly from Euclid. But he may have owed it to Faber Stapulensis®
(Jacques le Febvre), who had shown that it was impossible to divide a tone
numerically into two equal parts, but that the halving of any interval could
be accomplished by geometry. At any rate, Bermudo, whose one tuning
method was identical with Grammateus’, did depend upon Faber for the
method of constructing the mean proportionals. Faber exerted great
influence upon later writers who attempted to solve the tuning problem.
Especially among mathematical writers who dabbled in this field, Faber’s
name was held in something of the same esteem as that of Boethius.

Table 114. Hawkes’ Modified 1/5-Comma Temperament

:
Names {.'."’IIJ'."'{!.'Jr'i gb's E'i Y F‘"*z t.';'i G#'; .'._i Bb*% B*' (o©
Cents ©0 B3 185 303 390 502 566 €98 785 893 1005 1088 1200
M.D. 12.7; S.D. 13.0

Table 115. Gallimard’s Modified Meantone Temperament, No. 1

Names cc* D p* E F ¥ 6 6* A B B ¢

Deca. 0 212 484 744 969 1263 1461 1747 1980 2232 2526 2716 3010

Cents 0 B4 103 207 386 504 582 696 780 890 1007 1083 1200
M.D. 13.3; S.D. 14.9

Table 116. Gallimard’s Modified Meantone Temperament, No. 2

nmamescc* op o* E F ¥ G Y A BYP B C

Deca. 0 204 4B4 734 960 1263 1457 1747 1969 2232 2526 2716 3010

Cents 0 Bl 193 293 386 504 581 696 785 BO0 1007 1083 1200
M.D. 14.0; 8.D. 15.6



Table 117. Schlick’s Temperament (Hypothetical)

4l L

L 1 2 1 1
Names c®c*p™3 gt*3g ' F's F*'HG “5g¥iA"2 B
Cents- 0 90 196 302 392 502 590 698 7Y€ BO4 1002 1090 1200
M.D. B.0; 8.D. 8.8

] -]
3 B3 C*

Table 118. Grammateus’ Monochord (Pythagorean with Mean Semitones)
Names C°CTaD° D¥:(Ebi)E° F° FFiG® G*3A° BY'I @ C°
Cents 0 102 204 306 408 498 600 702 B804 906 1008 1110 1200
M.D. 3.3; 8.D. 4.6

This monochord division of Grammateus is seen to be of a subtle and
theoretical nature. It is equivalent to dividing the Pythagorean comma

equally between the fifths B-F* and BY-F. As such, it is identical with
Marpurg’s tuning K. This tuning may have been used in practice, but hardly
by anyone who was accustomed, like Schlick, to tune by ear. Note that it was
presented as a method not for fretted instruments, but for organs.
Grammateus said in his introduction: “There follows herewith an amusing
reckoning which serves the art of song called music, and from such
reckoning springs the division of the monochord, from which will then be
taken the proportionate length and width of the organ pipes after the opinion
of Pythagoras.”

So far as we know, Grammateus was the earliest writer with a method for
finding equal semitones as applied to a tuning system. Of course only ten
semitones will be equal, the other two being twelve cents smaller. Probably
many men who later spoke about equal semitones on the lute may have had
in mind some such division, perhaps made by dividing the tones
arithmetically instead of geometrically.

Ganassi’ had a method for obtaining equal semitones on the lute and viol
by linear divisions, using the ratios of just intonation for his basic scale.
Although he described his procedure in more complicated terms, his
monochord might have been tuned as follows: with A the fundamental, form
the minor third C with the ratio 6:5; form F and G as perfect fourth and fifth
to C with the respective ratios 4:3 and 3:2; divide the space between A and C



into three equal parts for B? and B; divide the space between G and F into
five equal parts for C”, D, EY, and E; F" will be half way between F and G,

and G” halfway between G and the octave A. The construction will be even
easier if we start with C: form F and G as perfect fourth and fifth to G;
divide the space between C and F into five equal parts, between F and G into
two equal parts, and between G and the octave C into five equal parts. In the
monochord shown in Table 119, the lengths and ratios have been added
according to Ganassi’s directions.

Actually, the above monochord does not quite represent Ganassi’s ideas.
His lute had only eight frets, so that the position of the notes above F is
rather conjectural. However, he placed a dot where G, the tenth fret, would
naturally fall, and it is reasonable to suppose that he would have made a
linear division for the semitones on either side of G. A greater departure
from his ideas lies in ignoring the tempering of the first and second frets: the
second fret is to be placed higher than 8/9 by the width of the fret, and the
first fret higher than 17/18 by half the width of the fret. Similarly the sixth
fret is to be placed lower than 17/24 by the width of the fret. His drawing for
the monochord is made with unusual care (see Figure H). It appears as if the
width of the fret were about 1/2 of 1 percent of the length of the string. This

tempering would make B® and B sharper by about half a comma, and E®
flatter by the same amount. The first two changes would not affect the tuning
greatly, but the change in the position of the sixth fret would be harmful.
Since Ganassi was not specific as to the relative length and breadth of the
string, we merely indicate here that he advocated these three tempered
values.



Fig. H. Ganassi’s Method for Placing Frets on the Lute and Viol Reproduced
by courtesy of the Library of Congress

Table 119. Ganassi’s Monochord (Just with Mean Semitones)

Lengths 120 114 108 102 96 90 85
Ratios  19/20 18/19 17/18  16/17 15/16 17/18 16/17
Names (C° X D-! X p=t F* X

Cents 0 88 182 281 386 498 597
Lengths 80 16 12 68 64 60

Ratios 18/20 18/19 17/18 16/17 15/16

Names G° X A - B™ oy

Cents 702 730 884 983 1088 1200

M.D. 6.5; 8.D. 7.8



Table 120. Reinhard’s Monochord (Variant of Ganassi’s)

Lengths 60 562/3 531/3 502/3 48 45 421/2 40 38

Names C° «x DY X E-t F° X G* X
Cents 0 09 204 202 386 498 597 702 790
Lengths 36 34 32 30
Names A"l x B~ oe

Cents 8684 0E3 1088 1200
M.D. 6.6; 5.D. 7.8

Table 121. Malcolm’s Monochord (Variant of Ganassi’s)

Ratios 16/17 17/18 18/19 19/20 15/16 16/17 17/18
Names C° X D’ X B F’ X
Cents 0 L05 204 298 J86 438 603
Ratios 18/19 19/20 16/17 17/18 15/16

Names G° X A= X B=! 5

Cents . 702 796 884 989 1088 1200

M.D. 6.5; S.D 7.8

Except for the arithmetical divisions, Ganassi’s tuning resembles
Grammateus’ treatment of the Pythagorean tuning, the difference being that
the basic scale here is just intonation. It also resembles Artusi’s treatment of
the meantone temperament, shortly to be described. But even if Ganassi had
used the Euclidean method to divide his tones, his monochord (M.D. 6.0;
S.D. 7.3) would have been inferior to either of the other two, since the
diatonic just scale varies more greatly from equal temperament than either
the Pythagorean or meantone does. But this is a good division, and has the
tremendous advantage that it is the easiest of all chromatic monochords to
form.

Ganassi’s method was discovered independently by Andreas Reinhard,'”
who described the syntonic tuning, and then gave a table in which the space
of each tone, whether major or minor, is halved to obtain the chromatic note.



His table gave string-lengths only, beginning with 45 for F. Since he used D’

instead of D"!, his intervals are in a slightly different order from Ganassi’s.
Ten years after Reinhard, his tuning method was taken over by Abraham

Bartolus,!! the sole difference being that the latter began with E (48) instead
of F (45). Bartolus gave Reinhard as his source. At first he advocated the
method for keyboard instruments, and later prescribed it also for fretted
instruments and bells. This general application of a tuning method is
something that is found in very few theorists of Bartolus’ period, most of
whom continued to say with Vicentinothat fretted instruments used equal
temperament, and keyboard instruments, the meantone temperament.

In one of the curious dialogs of Printz’s Phrynis Mytilenaeus'? this same
temperament is mentioned. “Charis” describes it and gives the string-lengths
for the C octave, 360 to 180, thus avoiding the fractions that Reinhard had
encountered. Very likely Printz intended this for Reinhard’s tuning, but his
perplexing use of anagrams effectively conceals Reinhard’s name, if it is
indeed hidden there.

Alexander Malcolm!'? had a division very similar to those of Ganassi and
Reinhard. In fact, it is the inversion of Ganassi’s, with semitones paired in
contrary motion. Although Malcolm said that the tones were to be divided
arithmetically, as 16:17:18, his table of string-lengths (lengths of chords)
represents a very unlikely division, difficult to make. Marpurg, who called
the system ugly, has represented it by a series of increasing numbers, as C,

C*, D are 48, 51, 54. This would mean that Malcolm’s ratios are to be taken
as vibration numbers, improbable in view of his own terminology for them.
Since Malcolm’s scale contains the same ratios for semitones as
Ganassi’s and Reinhard’s, although in a different order, the deviation for the
three scales will be the same. But his chromatic notes are all five or six cents
higher than Reinhard’s. It is very probable that Malcolm intended the same
division as Reinhard. Malcolm stated that Thomas Salmon had written about
this scale. But it 1s often referred to by Malcolm’s name alone. Certainly
these well-nigh equal semitones of Ganassi, Reinhard, Bartolus, Salmon, and
Malcolm represent a long-lived (almost two centuries) and very good way to

divide the octave with ease.
14

Levens’ “Sisteme”'” also had linear divisions only, but was far less
successful than those just described. His monochord had integer numbers
starting with 48 for C. Ganassi’s system had only five consecutive semitones
formed by equal divisions of a larger interval, but Levens’ had seven, from



42 for D to 28 for A. Thus Levens’ consecutive semitones vary in size from
85 to 119 cents. Furthermore, his semitone A-BP is very small (63 cents),

with the Archytas ratio, 28:27; whereas his semitone BY-Cb, with the ratio
27:25, is more than twice as large (133 cents). Levens’ deviations are as
great as for some varieties of just intonation.

Since C is 48 in Levens’ tuning, the monochord could easily be
constructed with a foot rule. But it would not be so easy to construct a
monochord of indefinite length for this tuning. A slight change in the values
of A and B would greatly simplify the construction of the monochord, and at
the same time would almost cut the deviation in half. It would then be
formed thus: Divide the entire string into 8 parts, putting D at the first point

of division, F at the second, and AP at the third. Divide the space between C
and D into two parts for C*. Divide the space between D and F into three
parts, for E® and E, and apply EF twice from F toward AP, for F* and G.
Divide the space from AP to the higher C (midpoint of the string) into four
equal parts, for A, B®, and B.

The third distinct method of forming equal semitones upon the lute stems
from Giovanni Maria Artusi.!> But, as with Grammateus’ division, only ten
of the semitones would be equal. In pointing out the “errors of certain
modern composers,” Artusi gave two examples of “intervals false for

singing, but good for playing on the lute.” Thus the diminished seventh, C*-

BP, in the beginning of Marenzio’s madrigal “False Faith,” is “false for
voices and for modulation, but not false on the lute and the chitarone.”

On the lute, he continued, “the tone is divided into two equal semitones.”
So far Artusi had been speaking very much as had his predecessors. But he
then stated that the tone in question is not the 9:8 tone, but the mean tone
used on the lute and other instruments. Later he called the tempered
semitone “the just half of the mean tone.” For constructing this temperament
he mentioned the mesolabium and the Euclidean construction for a mean
proportional, with references to Zarlino and Faber. The mesolabium would
have been useless for this purpose, unless Artusi had desired complete equal
temperament. But Euclid’s method would have served for constructing
meantones from just major thirds, andthenfor constructing mean semitones
from meantones.

Since Artusi did not give a detailed account of how his temperament was
to be formed, we can only surmise that all the diatonic notes were to be



tuned as in the ordinary meantone temperament and the chromatic notes by
dividing each of the tones in half. This is the “semi-meantone temperament”

mentioned by Ellis,'® “in which the natural notes C, D, E, F, G, A, B were
tuned in meantone temperament, and the chromatics were interpolated at
intervals of half a meantone.” According to Ellis, it had been in use on “the
old fretted or bonded clavichords.” Unfortunately, Ellis did not give the
source of this information.

Table 122. Levens’ Monochord (Linear Divisions)

Lengths 48 45 42 40 38 35 34 32 30 28 27 25 24

Names C° Db#' D EPH E F° x G° Ab+1 A pgbe gbhr o

Cents 0 112 231 316 404 408 507 702 814 933 006 1120 1200
M.D. 16.7; S.D. 10.9

Table 123. Levens’ Monochord (Altered Form)

Lengths 48 45 42 40 38 36 34 32 30 201/2 27 261/2 24

Names C° DPH D EVH E F x C° APH 5 BY B c®

Cents 0 112 231 316 404 408 507 702 814 902 906 1095 1200
M.D. 8.8; S.D. 10.3

Table 124. Artusi’s Monochord (Meantone with Mean Semitones) (Bonded Clavichord Tuning, No. 1)

L
+§

5 = e = ST
Names C'x D? x E ' F x GI x A x B ce
Cents 0 97 193 200 386 503 800 €07 794 890 987 1083 1200
M.D. 5.7; S.D. 7.6

Table 125. Bonded Clavichord Tuning, No. 2

Names C° x l:.‘-.é X EF§ FJ'* X G'& X A"* x E--i ol
Cents O 97 197 294 394 502 590 698 795 805 092 1092 1200
M.D. 2.6; S.D. 3.8



If these bonded clavichords had had their notes paired CC* DD* E FF*
GG" AA* B C, a fixed ratio could have existed between the notes in each

pair, so that C*, for example, would always be 96.5 cents higher than C. Of
course, the two diatonic semitones, E-F and B-C, would be about a comma
larger, at 117 cents each.

Some writers have said that the bonded clavichords necessarily used the
meantone temperament. But nothing would have prevented the performer
from tuning his diatonic tones sharper than mean tones. Suppose, for
example, it had become the fashion to diminish the fifth by 1/6 comma, as in
Bach’s day. Then the bonded clavichord would have had the scale shown in
Table 125.

In this tuning the standard deviation is fairly large because the semitones
E-F and B-C have a deviation of eight cents. If E and B are made four cents
sharper, the mean deviation is unchanged, but the standard deviation is

reduced to 3.0. This much can be done without changing the ratio of C to C*,
But a bonded clavichord that was constructed at the time Douwes was
writing (1699; see Chapter 11I) would have had the ratio of this pair of notes
fixed according to the temperament then in use, perhaps the 1/6-comma
meantone system, and the mean-semitone tuning would then have been even
better than in Table 125.

Furthermore, there is no valid reason why, the ratio of the semitones on a

single string could not have been 12.[5 if the bonded clavichord had been

constructed at a time when equal temperament was widely accepted. The
only difficulty is that the free clavichords were more common then. But it is
nonsense to think that there was any connection between free clavichords
and equal temperament, except where an old clavichord had retained sem-
itonal ratios that belonged to a type of tuning that had been superseded, Even
then, as we have shown, the open strings could have been tuned so that the
instrument as a whole would have varied only slightly from equal
temperament.

The only troublesome situation would occur when the bonded clavichord

had its ratios fixed so that, for example, the semitone between C° and D-‘lr
was not a mean semitone, but C#-%. Remember that Artusi was writing

about equal semitones on the lute, not on the clavichord. And other theorists,
advocating meantone temperament for keyboard instruments, made no
distinction between the clavichord, on one hand, and the organ and



harpsichord, on the other. Let us see, in Table 126, what could be done when
the fixed chromatic semitone has only 76 cents, the diatonic semitone, 117
cents.

Here we assume that C-C*, F-F¥ and G-G"are each 76 cents, and that D-

EP and A-BP are each 117 cents. The other seven semitones are free. If we
make them all equal, each will have 105.4 cents. That means that D and A
are flatter than in the regular meantone temperament; E, F, G, and B sharper.
After this somewhat eccentric tuning of the diatonic notes, the deviation is
almost half that of the regular meantone temperament, but is still not quite so
good as that of the old Pythagorean tuning, untempered. Therefore on a
bonded clavichord that was built for the complete meantone temperament,
even the most scientific tuning of the free strings would not make a very
acceptable temperament. And such clavichords would certainly have delayed
the acceptance of equal temperament.

A corroboration of Artusi’s method of forming equal semitones on the

lute came from Ercole Bottrigari.!” He had classified instruments by their
tuning, as Zarlino had done. He went on to show that the lute cannot play in
tune with the cembalo. If the E string of the lute is tuned in unison with the E
of the cembalo, the F’s will be out of tune, the G*’s willagainbe in tune, and
the G’s out of tune. He explained that, since on the lute the tone was divided
into two equal semitones, and on the cembalo into two unequal semitones,
then the diatonic semitone E-F, with the ratio of 16:15 tempered, would be
higher on the cembalo than on the lute; but the chromatic semitone G-G*
(25:24 tempered) would be higher on the lute.

Table 126. Bonded Clavichord Tuning, No.3

Names C ¢* D E® E F ¥ G G A BY B C
Cents © 76 181 208 403 509 585 601 767 872 080 1004 1200
M.D. 12.0; S.D. 13.7

This explanation would be true, even if the lute were in equal
temperament. But the interesting question is why the G’s were in tune if the
E’s were, and vice versa. If the lute were in equal temperament, it would
have no pitches in unison with the cembalo save the one that was tuned to a
unison to begin with. Now, Bottrigari was referring to a tuning in which the



order of strings was D, G, C, E, A, D. Of these the E string was called the

“mezanina,” the middle string. On either D string or on the A string, the 2nd,

3rd, and 5th frets formed a diatonic sequence — A, B, C, Dor D, E, F, G.
Since the position of the frets was the same on all the strings, the

succession on the E string would have been E, F¥, G, A. Therefore, if the
diatonic notes on the D and A strings were tuned in unison with those on the

cembalo, as in Artusi’s tuning, the notes E, F¥, G, and A on the E string will
also be in unison. But E-F on the lute will be half a meantone and so will G-

G”, whereas the E-F of the cembalo will be a tempered major semitone and

the G-G” a tempered minor semitone. (F*-G, about which Bottrigari said
nothing, will be the ordinary major semitone of the meantone temperament
on both instruments, and will be almost a comma larger than these other
semitones on the lute.) This is the only reasonable explanation of Bottrigari’s
statement, and, since it was made only nine years earlier than Artusi’s
account, we may surmise that this method of tuning was in common use
about 1600. We should be careful, therefore, not to assume that every
statement about the use of equal semitones on the lute necessarily meant

equal temperament, with the ratio of 12.‘@ for the semitone.

Temperaments Largely Pythagorean

A great many irregular temperaments are largely Pythagorean, that is,
they contain many pure fifths. This is reasonable enough, since pure fifths
are easy to tune and do not depart greatly from the fifths of equal
temperament. As we shall see, many of these are typical “paper”
temperaments, ill adapted either to tuning by ear or to setting upon a
monochord. But first we shall examine several that used linear divisions
only.

Martin Agricola,'® who was responsible for a good version of just
intonation, showed a monochord for the lute in which the diatonic notes, like
those of Grammateus, were joined by pure fifths. To divide the tones into
diatonic and chromatic semitones, Agricola applied the old doctrine that the
tone is divisible into 9 commas, 5 for the chromatic semitone and 4 for the

diatonic. He tuned a G string, marking off G* as 5/9 the distance from G to
A. That means that G:G":A as 81:76:72. Thus the diatonic semitone G*-A



had the ratio 19:18, or almost 94 cents, instead of 256:243 or 90 cents, and
the chromatic semitone 110 cents instead of 114.

Agricola formed his A” and C” like the G”. As there were only seven
frets on this string, he did not give values for D¥, F, and F*. But F is of
course a major tone below G, and he had previously shown E* (although he
called it “dis”) tobe a tone below F. But there BP had been shown to be a

tone lower than C, 20 cents flatter than the A* on the other string. These
inconsistencies are bound to arise when any unequal tuning is used on a
fretted instrument, as Galilei pointed out. For the sake of a logical
construction, let us assume (see Table 127) that each of the five tones in the
octave is divided into 5 + 4 commas. This may be slightly better than
Agricola’s tuning would have been if he had applied it to an entire octave.

Table 127. Agricolas Pythagorean-Type Monochord

- 12 -3 - | L
Names c° c'"8po pft g0 p Flrige gt a0 Al g

Cents 0 110 204 314 408 498 608 702 812 906 1016 1110 1200
M.D. 8.3; S.D. 8.6

Table 128 WSng Pho’s Pythagorean-Type Monochord

Lengths 900 £44 600 751 713 668 633 600 563 534 501 475 450

Names C C* p p* E E* ¥ G G' A A B C

Cents 0 111 204 313 403 516 609 702 B12 904 1014 1107 1200
M.D. 8.9; 5.D. 9.0

This system, if we can call it a system, is appreciably better than the
ordinary Pythagorean tuning. It contains ten pure fifths; the fifth B-F” is four
cents flat (1/6 comma), and A*-F is twenty cents flat. But none of the credit
belongs to the inventor. Agricola, like many another good man, confused
geometrical with arithmetical proportion. The old statement about the sizes
of semitones is very nearly correct when geometrical magnitudes are in
question, but is less accurate when applied to linear divisions. Furthermore,
it was a happy accident that led him to make his chromatic notes sharps. If



he had divided the tone G-A into G-AP-A in this same manner, his diatonic
semitone would have contained 88 cents, the chromatic, 116, thus diverging
more widely from equality than the Pythagorean semitones do. An
accidental improvement is the best we can say for this tuning of Agricola.
Agricola’s approximation for the Pythagorean tuning suggests the
monochord of an early Chinese theorist, Wang Pho, who lived toward the

end of the tenth century.!” Perhaps he was familiar with the excellent
temperament of HO Tchheng-thyén, but, if so, was too timid to follow his
example. Starting with the Pythagorean tuning for the octave 900-450, he
has retained the purity of G and D. He lowered the pitches of all the other

notes by adding two units for C*, D, E, and E”, and one unit for F*, G*, A,

A" and B. This was too small a correction for most of the notes, as can be
seen from Table 128, which is comparable to that of Agricola.

John Dowland is another writer whose tuning system, like those of
Ramis, Grammateus, Agricola, and others, had a strong Pythagorean cast. In
his account of “fretting the lute,” C, D, F, G, and A have Pythagorean

tuning.20 The chromatic semitone from C to C* is 33:31, or 108 cents, not far
from the Pythagorean of 114 cents. The diatonic semitone from D to EP is
22:21, or 80 cents, considerably flatter than the Pythagorean of 90 cents. G*
and B® form pure fifths to C* and EP respectively. An unusual feature of the
tuning is F* taken as the arithmetical mean between F and G, and E (!) as the

mean between EP and F. The value for E thus obtained, 264:211, is 388
cents, almost a pure third above C, instead of the expected Pythagorean

third. The third D-F#, of 393 cents, is likewise an improvement. Thus the
deviation is somewhat less than that for the Pythagorean timing, being
almost the same as that of Agricola’s system. There is no B on this string,
but we have made B a pure fifth above E.

The trend of Dowland’s tuning resembles that of Ornithopar- chus,
whose Micrologus was translated into English by Dowland. Ornithoparchus’
division of the monochord was entirely Pythagorean, a ten-note system

extending from AP to B by pure fifths. It was natural for Ornithoparchus to
advocate the Pythagorean tuning, since most of his contemporaries had not
yet departed from it. But a century later, the Pythagorean tuning was
becoming somewhat rare. And yet Dowland’s fellow countryman Thomas
Morley, whose precepts have been quoted by everyone who writes about
Elizabethan music, gave only a Pythagorean monochord.



Unusual ratios are a feature of Colonna’s tunings also, although he

definitely included some ratios that belong to just intonation as well.>! He is
noted in the field of multiple division for having described an instrument, the
Sambuca Lincea, similar to Vicentino’s Archicembalo, upon which the
division of the octave into §1 parts could be accomplished. His mathematical
theory of intervals is very ingenious, including superparticular proportions,
but also more subtle fractions. He began with certain well-known consonant
ratios: 1:1 (unison), 6:5 (minor third), 5:4 (major third),4:3 (fourth), 3:2
(fifth), and 5:3 (major sixth). Then if a string of the monochord is divided to
produce a certain interval, the sounding part of the string should produce
with the other part (the Residuo) either one of the above intervals or a higher
octave of it. This means that if any of the above ratios is called b:a, intervals

derived from it have ratios of the form (2Xb + a):2¥b. For example, from 1:1
comes 17:16; from 6:5 comes 11:6; from 3:2 comes 25:24. Colonna’s two
chromatic monochords are shown in Tables 130 and 131. Each contains
seven pure fifths and several pure thirds. The worst feature of both

monochords is the 55:54 chromatic semitone of 30 cents (as G-G” or B*-B) —
not much larger than a comma. Almost as bad is the 12:11 diatonic semitone

of 152 cents, as G*-A or B#-C.22 The 27:25 diatonic semitone of 134 cents,

as F*2-G” or C*2- D’, is not good either, but is a blemish found also in
ordinary Just intonation. A redeeming feature of the first monochord is the
division of the 9:8 tone into 17:16 and 18:17 semitones.

Colonna’s division of the 10:9 tone into 12:11 and 55:54 “semitones” is
reminiscent of the superparticular division of the 10:9 tone that Ptolemy
used for his soft chromatic tetrachord, 5/6 x 14/15 x 27/28, and of the
common division of just intonation derived from Didymus’ chromatic, 5/6 X

24/25 x 15/16.%3 other possible divisions of the 10:9 tone are 13:12 and
40:39, which is somewhat better than Colonna’s division, and the linear
division 19:18 and 20:19, as inGanassi. Divisions of the 9:8 tone include
17:16 and 18:17, as well as 15:14 and 21:20, both of which Colonna used.
Other possible superparticular divisions of the 9:8 tone are 13:12 and 27:26;
12:11 and 33:32; 11:10 and 45:44; and 10:9 and 81:80, this last, of course,
being the minor tone and comma.



Table 129. Dowland’s Lute Tuning

Ratios 1 33:31 9:8 33:28 264:211 4:3 24:17 3:2 09:62

Names C ct D ED X F X G c*
Cents 0 108 204 @ 28B4 388 408 597 702 810
Ratios 27:16 99:56 [396:211] 2:1
Names A Bb X C

Centz 906 986 1000 1200
M.D. 8.2; 5.D. 10.1

Table 130. Colonna’s Irregular Just Intonation, No. 1

Lengths 50 48 45 [426/17 40 37172 36
Ratios 24/25 15/16 16/17 17/18 15/16 24/25 25/27
Names  C° gir=s D (Y] E F' et
Cents 0 70 182 287 386 498 568
Lengths 33173  328/11 30  284/17 262/3 25

Ratios 54/55 11/12 16/17 17/18  15/16

Names G° G* A= Bb Bt

Cents 702 732 884 989 1088 1200

M.D 22.0; S.D. 30.3



Table 131. Colonna’s Irregular Just Intonation, No. 2

Lengthse 1920 2000 2160 2304 2400 2560 2688
Ratios 24/25 25/27 15/16 24/25 15/16 20/21 14/15
Names c® c? - D° gb+i E-} F° F#
Cents 0 70 204 316 386 4098 €18
Lengths 2880 3072 3200 3456 3520 3842

Ratios 15/16 24/25 925/27 54/56 11/12

Names G° A A o+ B o

Cents 702 814 £84 1018 1048 1200

M.D. 20.3; S.D. 33.8

Divisions of the Ditonic Comma

The Pythagorean-type temperaments in our second group are more
difficult to construct, in that they contain unusual divisions of the ditonic
comma. By ear, these temperaments would have been almost impossible in
many cases, because there are no pure intervals to check by as in some
varieties of the meantone temperament, nor are there even fairly definite

tempered intervals, such as the C E G* C of equal temperament, which also
provide a good check. For the division of the monochord, these
temperaments could have been set down readily with the aid of logarithms,
and they can be expressed in our modern cents with the greatest of ease.
Computers who did not use logarithms were able to achieve comparable
results by a linear division of the comma, but had less success if they
ignored the schisma which separates the syntonic from the ditonic comma.
In most of our tables we shall assume, for the sake of convenience, that the
ditonic comma has been given a correct geometric division, and shall assign
cents values to the intervals accordingly.

The leading exponents of this sophisticated sort of comma- juggling

were Werckmeister, Neidhardt, and Marpurg.”* Each has expressed the
alteration of his fifths and thirds in the 12th part of a comma, which, strictly,
should be the ditonic comma. Since the ditonic comma is approximately 24
cents, this means that 2 cents will be taken as the unit of tempering. Thus the



octave would contain 600 parts, or thereabouts. This is an interesting
forerunner of the cents representation.

In evaluating this group of temperaments, it should be pointed out that
there are two opposing points of view. Since we are likely to regard most
highly those irregular systems that come closest to equal temperament, there
will be in each subclass a temperament by Marpurg or Neidhardt that wins
the award because in it the altered fifths are symmetrically arranged among
the entire 12 fifths of the temperament. In these temperaments all keys are

pretty much alike, whether nearer to C major or F* major.

But the whole intent of having a “circulating” temperament, of having
the octave “well tempered,” was to have greater consonance in the keys most
used than in those more remote. This is made very clear in the writings of
Werckmeister and Neidhardt. We should fail in our duty, therefore, did we
not refer at the end of this chapter to temperaments we have discussed that
satisfy this ideal of graduated dissonance. Both Werckmeister and Neidhardt
had a proper respect for equal temperament also, but a fanatic like

Tempelhof,>> writing fifty to seventy-five years later, could say that equal
temperament was the worst possible temperament because one scale must
differ from another in its tuning!

The simplest alteration of the Pythagorean tuning is to divide the comma
into two equal parts. If the altered fifths are consecutive, there will be a
temperament somewhat like the modification of the meantone temperament
shown at the beginning of this chapter. This is Kirnberger’s tuning,?® except
that he has divided the syntonic comma arithmetically between the fifths D-
A and A-E, thus getting a slightly smaller deviation than if he had divided
the ditonic comma (see Table 132).




Table 132. Kirnberger’s Temperament (1/2-Comma)

Ratios I 256:243 9:8  32:27 54 4:3  45:32 3:2 128:81
Namcs C° p® D’ Eb? E™ F' phel a’ abo
Cents 0 30 204 294 J86 498 590 TO2 792

Ratios 270:161 16:9 15:8 2:1
Names AH] Bb® Bt (°
Cents A95 986 1088 1200
M.D. 9.0; S.D. 9.7

Baron von Wiese’s second tuning was exactly the same as Kirnberger’s.
He was so confirmed a Pythagorean that he called E-! F*! and B! by the

respective names Fb°, GY°, and CY°, each of which would have been 2 cents
(the schisma) flatter than the corresponding syntonic value. However, von

Wiese’s first temperament?’ actually did divide the ditonic comma, making

his F# the mean between D®° and B’ (Table 133). His ratio for F¥
5760:4073, 1s an excellent approximation for the square root of one-half.
Von Wiese’s other three temperaments are respectable enough, for in
them the tempered fifths are separated by a minor or major third. Since the
deviation is the same for all three, we show No. 3 only (Table 134). Von

Wiese has indicated it as extending from B® to D¥; but from the construction

it extends from GP to B, with the fifths E>-B® and B-G® each tempered by
half the ditonic comma. The best arrangement of the tempered fifths is for
them to be separated by a semitone or a tritone. The latter arrangement
occurs in Grammateus’ temperament, shown earlier in this chapter, which is
identical with Marpurg’s K. Note that von Wiese’s No. 3 is the same as

Grammateus’ except for BP.

Table 133. Von Wiese’s Temperament, No. 1 (1/2-Comma)

4
Names C°D®® D° EP® B F° F¥ 2 G° AD® A° BP® B* C°
Cents 0 80 204 294 408 498 600 T02 792 906 99€ 1110 1200
M.D. 10.0; S.D. 10.8



Table 134. Von Wiese’s Temperament, No. 3 (1/2-Comma)

1 1
Names €O D*ipe EY3pe po gY*1 ge AU% 40 B g oo

Cents 0 102 204 306 408 498 500 702 804 906 996 1110 1200
M.D. 5.0; 5.D. 6.6

Next in order would be temperaments in which the ditonic comma is

divided among three thirds. Charles, Earl Stanhope?® advocated such a
division, but indicated that the syntonic comma should be divided among the
fifths G-D, D-A, and A-E. This left the schisma, 2 cents, to be divided

among the four fifths from Bb to GP, the other five fifths being pure. Thus
the four black keys are only one cent sharper than if the tuning were purely
Pythagorean. He might better have divided the ditonic comma among his
first three fifths, and not have had the approximate fifths to worry over. With
the ditonic comma divided among three consecutive fifths, the mean
deviation 1s 9.0, the standard deviation 9.7. Stanhope’s own temperament
(Table 135) is slightly better than this, just as Kirnberger’s was better than
von Wiese’s No. 1, because the former divided the syntonic comma.

Werckmeister?” has shown a temperament in which the comma is
divided into three parts. It is, however, even less satisfactory than
Stanhope’s, because it contains five fifths flat by 1/3 comma, two fifths
sharp by 1/3 comma, and only five perfect fifths (see Table 136). This is the
poorest of the three temperaments Werckmeister called “correct.”

Bendeler has used the 1/3-comma tempering in two of his three organ
temperaments.3” In the first, the tempering is shared by the fifths C-G, G-D,
and B-F# (Table 137). Since these are not all consecutive fifths in the circle
of fifths, his deviation is considerably less than Stanhope’s.




Table 135. Stanhope’s Temperament (1/3-Comma)

Lengths 120 113 84 107.1 101.19 1 90 85.38
Names 4 pbe o3 ED® E" P Goo
Cents 0 91 197 205 386 498 589
Lengths 80 75.80 .1 67.5 84 60

Names G’ AD? ﬁ“g BbY B> £°

Cents 702 793 892 896 1088 1200
M.D. 7.8; 8.D. 8.7

In Bendeler’s second temperament (Table 138), the comma is divided

among the three fifths C-G, D-A, and F*-C*, Since the fifths are more widely
separated than before, the deviation is less than for No. 1.

Table 136. Werckmeister’s Correct Temperament, No. 2 (1/3-Comma)

=1

g L .2 oo 4L
Names c¢ c" 3D 3 g g3 g gl GFia73 BT BT
Cents 0 62 196 204 392 498 588 004 760 890 1004 1PB6 1200
M.D. 9.2; 8§.D. 10.7

Table 137. Bendeler’s Temperament, No. 1 (1/3-Comma)

L - _2 L
Names coct ‘1:-i E® g3 g g G} G"-'.ﬁ.-i g E'; co
Cenis 0 90 188 204 392 458 583 0634 792 690 996 1094 1200
M.D. 5.0; S.D. 5.8

Table 138. Bendeler’s Temperament, No. 2 (1/3-Comma)

eal ga

Names ¢ ¢"'p? g% g ¥ m g i gr el B B3 o
Cents 0 90 196 204 392 458 596 694 792 690 996 1094 1200
M.D. 4.0; S.D. 4.8



The best arrangement of the three tempered fifths is to have them

separated by major thirds, as in Marpurg’s I, where E and G” are the same
pitches as in equal temperament (see Table 139).
The most famous of Werckmeister’s irregular divisions has the comma

divided equally among the four fifths C-G, G-D, D-A, and B-F” 3lsince three
of these fifths are consecutive, the deviation is comparatively large (see
Table 140). This is the only temperament that Sorge has ascribed to
Werckmeister. The same division was accepted bv Marpurg, and a modern

acoustician, Karl Erich Schumann,3? has followed suit, without mentioning
any secondary source.

In Werckmeister’s third “correct” temperament (Table 141), five fifths
(D-A, A-E, F#-C*, C*-G*, and F-C) are flattened by 1/4 comma, and one
fifth, G*-D”, is raised by the same amount. Thanks, however, to the more
nearly symmetrical arrangement of the tempered fifths, the deviation is
slightly less than for his first temperament.

In his third temperament, Bendeler,?> unhampered by a sharp fifth and
with a fairly symmetrical arrangement of the four flattened fifths (C-G, G-D,

E-B, G-D"), succeeded in achieving a very good division (Table 142).
But, as usual, the best temperament for a particular division of the
comma is completely symmetrical, and so Neidhardt, in his fourth Fifth-

Circle (Table 143), gave EY, F*, and A the same pitches they would have in
equal temperament. (Marpurg’s H is identical with this.)

When the comma is divided into five parts and the tempered fifths are
arranged as symmetrically as possible, the deviation begins to approach the
vanishing point. (Paradoxically, this deviation is lower than for a wholly
symmetrical arrangement of six fifths tempered by 1/6 comma, shown in the
next section.) In Marpurg’s G (Table 144) this near-symmetrical division is
made. Marpurg called the amount of tempering 2 ;—/ 12 = 5/24 comma, which

would be 5 cents, slightly larger than 1/5 comma or 4.8 cents. Although the
difference between the two is wholly negligible, the latter amount of
tempering has been used in making the table, with the values rounded off to
even cents.



Table 139. Marpurg’s Temperament I (1/3-Comma)

j A L
Names C° c¥ 3pe g"°3

Cents 0 106 204 302 400 506 €04 702 800 006 1004 1102
M.D. 3.0; §.D. 3.5

Table 140. Werckmeister’s Correct Temperament, No. 1 (1/4-Comma)

bo f

- =k -1 B =1 i - -
Names C* c"'p™2 g™ g1 go g''Gg"t g*' a7 g® g

Cents 0 00 102 2094 300 408 588 606 702 BBB 936 1092
M.D. 6.0; 8.D. 7.5

Table 141. Werckmeister’s Correct Temperament, No. 3 (1/4-Comma)

ﬂll-'

3 } - L - - = A -

Names C° Cr*D“ Em‘E : F'a I"ill ige G# "ATd Bm" B

Cents 0 96 204 300 3968 504 600 702 792 900 1002 109%
M.D. §.0; 8.D. 5.7

Table 142. Bendeler’s Temperament, No. 3 (1/4-Comma)

- =d o - - . i

Names € cf 3 g™ g3 po ptigd gt 1,1 pho B3

Cents 0 96 192 294 396 498 594 696 798 §94 006 1002
M.D. 3.3; §.D. 3.1

Table 143. Neidhardt’s Fifth-Circle, No. 4 (1/4-Comma)

] S | . sk ol lod  wd %
Names c®c' ip™1 g"*1g™% o P igi gfiati gP pd
Cents 0 96 198 300 396 493 600 696 TOB OQ0 006 1008

M.D. 2.7; 8.D. 2.8
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Table 144. Marpurg’s Temperament G (1/5-Comma)

-2 _1 1l _32
Names C° C# D ¢ E:b+5E 5 F® F"'gﬁﬂ G#": .P.'j’ Ebhf!' B'i Cco

Cents 0 100 199 239 398 498 602 702 BO2 901 1001 1100 1200
M.D. .7; §.D. 1.3

The 1/6-comma temperament is recommended by Thomas Young,>* as a
simpler method than the irregular temperament described later in this
chapter. In his own words, “In practice, nearly the same effect may be very
simply produced, by tuning C to F, BY, Eb, G*, C*, F six perfect fourths; and
C, G, D, A, E, B, F” six equally imperfect fifths.” In other words, he had six
consecutive fifths tempered by 1/6 ditonic comma (see Table 145). As a
practical tuning method, this would not be difficult, and it certainly does
differentiate between near and remote keys. This is the tuning of the Out-Of-
Tune Piano, the sort of tuning into which a piano originally in equal

temperament might fall if played upon by a beginner.>> Young’s key of G is

the best, that of DP the worst. If he had commenced his set of tempered fifths
with F instead of C, the key of C would have been best.

Table 145. Young’s Temperament No. 2 (1/6-Comma)

- - 1
Names C® D p°1 g% EY po g% G A a'i g% BJﬂ co

Cents 0 90 196 204 392 498 588 698 793 894 906 1090 1200
M.D. 8.0; S.D. 6.8

In Neidhardt’s second Fifth-Circle (Table 146), all the fifths are altered
by 1/6 comma, nine being lowered and three raised. Since the arrangement is
completely symmetrical, the deviation is low.

Table 146. Neidhardt’s Fifth-Circle, No. 2 (1/6-Comma)

_d — odad had o 1 2
Names C°C' ipe EP* E™3 ptd pfigTi ¢ 3471 RU*T g1 (o

Cents 0 102 204 298 400 502 604 698 800 902 1004 1098 1200
M.D. 3.0; S.D. 3.4



Of course, a symmetrical arrangement of fifths alternately pure and
lowered by 1/6 comma comes closest to equal temperament. Both Neidhardt
(Third Fifth-Circle) and Marpurg (F) have presented this temperament
(Table 147). Observe that in it the consecutive notes are alternately the same
as in equal temperament and 2 cents higher, so that the mean deviation and
standard deviation both are equal to 2.0. More elaborate patterns of
semitones either 2 cents higher or lower than in equal temperament could be
obtained by having two pure fifths alternate with two tempered fifths, or by
having three pure fifths similarly alternate with three tempered ones.

Table 147. Neidhardt’s Fifth-Circle, No. 3 (1/6-Comma)

o il i 1 . o -
Names ¢* c¥ ip™3 g™35g™3 p*s g ige ¥ 35473 P

ktl—

5 g i o

Cents 0 102 200 302 400 502 600 702 BOO 902 1000 1102 1200
M.D. 2.0; 8.D. 2.0

Bermudo,?® who had also formed equal semitones on the lute by the
method of Grammateus, made a real contribution to tuning theory in a
chapter “concerning the seven-stringed vihuela upon which all the semitones
can be played.” This was a method intended for experienced players. His
account of the division is necessarily lengthy and need not be given as a
whole. G 1s the fundamental, and there are 10 frets, thus making no
provision for F* on this string. The notes from EP to G inclusive are formed
by a succession of pure fifths. The thirds G-B and A-C” are each 2/3
syntonic comma sharper than pure thirds. The tone G-A is 1/6 comma less
than a major tone. Then D and E form pure fourths with A and B,
respectively, and G is a fourth below C*.

The geometry, which consists of linear divisions only, is easy to follow,
especially with the aid of Bermudo’s monochord diagram (see Figure I). In
ratios, as will be seen in Table 148, it becomes quite complicated, and, if
these ratios were to be represented by least integers, as was done in many of
these systems, the fundamental note G would have to be 62,985,600! Let us
assume that F*, the unused 11th fret, is a pure fourth above C*.
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Fig. I. Bermudo, Method for Placing Frets on the Vihuela Reproduced by
courtesy of the Library of Congress

Table 148. Bermudo’s Vihuela Temperament (1/6-1/2-Comma)

Names  G© G"'"l A'{ B B_::' Co
Ratios 1 402075:463684  540:481  32:27  1215:964  4:3
Cents 0 102.9 200.3  294.2 400.6 498.0
Names CH--’* D-i! Em E"; Fo FF-E GP
Ratios 184025:115821 720:481 128:81 405:241 16;9 [218700;115921 2:1
Cents 600.9 €96.3 7921 898.6 9961  [Joesd 1200

MD.39; S.D. 4.2

The reason Bermudo’s system is presented in connection with the use of
fifths tempered by 1/6 comma is that that is precisely what he has. If the
temperament of successive fifths is examined, it will be seen that the fifths
on G, A, and B are each tempered by 1/B comma, eight fifths are pure, and

the usual wolf fifth, G*- E®, is 1/2 comma flat. (It really should not be
calleda wolf fifth, since it is flat, not sharp, and the usual poor thirds of the

mean- tone temperaments, on B through G*, are the best of all!)

This is the first time, so far as is known, that any writer had suggested
the formation of notes used in equal temperament by the proper division of
the comma for those notes. Of course he was making an arithmetical
division of the syntonic comma, and thus had small errors. But so did the
late seventeenth and most of the eighteenth century comma-splitters from
Werckmeister to Kirnberger and Stanhope. Bermudo’s three tempered fifths
are as symmetrically arranged as in the Neidhardt-Marpurg system shown

before this. It is too bad he did not continue his process by tempering D* by
2/3 comma and E” by 5/3 comma. Then he would not have had the half-

comma error concentrated on a single fifth, nor a Pythagorean third on EP.
But this method of Bermudo is worthy of our respect as a very early



approach to equal temperament, somewhat difficult, but not impracticable
for a skilled performer to use.

Werckmeister is the only later writer to temper his fifths by the 7th part
of a comma, perhaps following the example of Zar- lino’s 2/7-comma

variety of meantone temperament.>’ But his Septenarium temperament is a
rather eccentric thing. In it the fifths C-G, Bb-F, and B-F* are 1/7 comma

flat; F*-C* is 2/7 comma flat; G-D is 4/7 comma flat; D-A and G*-D* are 1/7
comma sharp; the remaining five fifths are pure. (The cents values have been
worked out from Werckmeister’s string-lengths, and are slightly inaccurate.)

Table 149. Werckmeister’s Septenarium Temperament (1/7-Comma)

Lengths 196 186 176 165 156 147 139 131 124 117 110 104 98
=g -2 |:|+] ] H...'." - #=y -1 I‘:H--E
Names ° CcF'p g 7 GG AT BT OB Co

4
T

TE'T F* F
Cents 0 91 186 298 395 458 585 698 793 833 1000 1097 1200
M.D. 4.7; S.D. 5.6

Table 150. Symmetric Septenarium Temperament (1/7-Comma)

-n-‘ ._._I' 2 __E __I: 4
Names C°® C'"*p"7 g™ g™ 5*Y §¥ g 1 g*ia-f g1 g o

Cents” 0 100 201 301 401 501 508 699 799 899 998 1100 1200
M.D. 0.5; 8.D. 1.0

For the sake of a comparison with Werckmeister’s temperament, a
symmetric version of the 1/7-comma temperament is shown in Table 150. It
1s even nearer equal temperament than Marpurg’s G, which hada symmetric
distribution of the fifth part of the comma.

Next we have a large group of temperaments in which some fifths are
tempered by 1/6 comma and others by 1/12 comma, while the remaining
fifths are pure. Since 1/12 comma is the temperament of the fifth of equal
temperament, there will be as many pure fifths as there are fifths tempered
by 1/6 comma. This group of temperaments might be considered, therefore,
as variants of the previously described temperaments in which there are six
pure fifths and six fifths tempered by 1/6 comma.



Neidhardt was the great inventor of temperaments in which the comma

was divided into both 6 parts and 12 parts.>® All three “circulating”
temperaments fall into this group. They happen to be among the poorest of
this type that he or the other theorists have evolved —that is, when
compared with equal temperament. But we shall see that they do satisfy
Neidhardt’s purpose in creating them. The first circulating temperament
(Table 151) has four fifths in each group — pure, tempered by 1/12 comma,
and by 1/5 comma. Since four consecutive fifths in it are tempered by 1/5
comma, it may be considered a variant of the 1/5- comma meantone
temperament.

The first of Thomas Young’s pair of temperaments is very like the

Neidhardt temperament shown in Table 151.3° Young said, “It appears to
me, that every purpose maybe answered, by making C:E too sharp by a
quarter of a comma, which will not offend the nicest ear; E:G* and AY:C
equal; F*:A” too sharp by a comma; and the major thirds of all the
intermediate keys more or less perfect as they approach more or less to C in
the order of modulation.”

Table 151. Neidhardt’s Circulating Temperament, No. 1 (1/12-, 1/6-Comma)

-d
]

o =4 - r
Names C°© C’* iD i'EI'-“‘:' E F® F”"; E—"‘i G#_% A'% Bhﬂ B-i ce
Cents 0 94 196 296 392 498 592 €98 796 804 006 1002 1200
M.D. 4.0; §.D. 4.6

Young accomplished the first result by tempering the fifths on C, G, D,
and A by 3/16 syntonic comma, and the other results by tempering the fifths

on F, B, E, and B by approximately 1/12 syntonic comma, and leaving the
other four fifths pure. The total amount of tempering would be 13/12
syntonic comma, this being sufficiently close to the ratio of the ditonic to the
syntonic comma. Young has given numbers for his monochord, and they
agree well with his theory. He has made a mistake, however, in calculating

the length for EP (83810), which was intended as a pure fourth below G# The
corrected length is given in Table 152.



Table 152. Young’s Temperament, No. 1 (1/12-, 3/16-Comma)

Lengths 100000 D4723 89304 84197 79752 74821 71041

Names £ C#_%- D o g Fr F'R
Cents 0 94 186 208 392 500 592
Lengths 66822 683148 59676 56131 53224 30000

Names G-ﬁ G#-ﬂ A-ﬁ EI':'H'i }.':-'-.E cP

Cents 693 796 894 1000 1092 1200

M.D. 5.3; S.D. 5.9

Now 3/16 syntonic comma is an awkward interval to deal with. If,
instead, we take 1/5 ditonic comma as the temperament of Young’s four
diatonic fifths, and 1/12 ditonic comma for his second group of fifths, his
monochord will be precisely of theNeid- hardt type. The differences from
the monochord he did give are so small that the cents values do not differ.
The arrangement of his second group of fifths is slightly different from
Neidhardt’s, and this accounts for the difference in deviation.

Mercadier’s temperament (Table 153) closely resembles Young’s, even
to the total amount of tempering — 13/12 syntonic comma.*® He directed that
the fifths from C to E should be flat by 1/5 syntonic comma, and those from

E to G” flat by 1/12 comma. Then G is taken as AP, the next three fifths are
to be just, and the fifth F-C then turns out to be about 1/12 comma flat.

Table 153. Mercadier’s Temperament (1/12-, 1/6-Comma)

1

_H. i | - 1 o ok _5 - " - _ 1 s
Names c' c# BD 3 BV B pmpti gl gF 7 an2 gm0
Cents 0 94 197 296 394 500 594 698 794 895 D9B 1094 1200
M.D. 4.1; 5.D. 4.5



Table 154. Marpurg’s Temperament D (1/12-, 1/6-Comma)

1
Names ¢® ¢! Ip-1gv*ig % o §¥1i 5 ' ia™i gl
Cents 0 98 198 300 398 498 600 698 798 90D 998 1098 1200
M.D. 1.3; S.D. 1.6

Table 155. Neidhardt’s Circulating Temperament, No. 2 (1/12-, 1/6-Comma)

e -1 +l _-1 _1 ___g_ o ! _! _1 1 _1'
Names c° c¥ 3ip 3 g% gt g 3g78 gFTIATE BB BT o
Cents 0 96 196 298 394 500 5958 698 796 894 1000 1096 1200
M.D.3.3; §.D. 3.7

Table 156. Neidhardt’s Circulating Temperament, No. 3 (1/12-, 1/6-Comma)

a 1 i 7 2 1 kd
Names € cf ip iEMiE T g 3Gt gfiatipgttE pTm oo

Cents 0 96 196 208 394 40B 596 69¢ 706 894 ﬂﬂﬁ 1096 1200
M.D. 2.7; E.D. 2.9

Table 157. Neidhardt’s Third-Circle, No. 4 (1/12-, 1/6-Comma)

-4 . _ 1 -2 1 - 4 _2
Names €0 M dp 3™ g3 g p#igms gt ia71 BP* Y o

Cents 0 96 196 206 396 498 596 603 796 834 1000 1094 1200,
M.D. 2.7; €.D. 3.4

As usual, Marpurg has presented the symmetric version (Table 154) of
the above temperaments. It has negligible deviations.

In the second and third of Neidhardt’s “circulating” temperaments, six
fifths are tempered by 1/12 comma, and three each are pure or are tempered
by 1/6 comma. These two temperaments (Tables 155 and 156) are quite
similar, both containing three consecutive fifths tempered by 1/6 comma.
Thus they possibly represent the extreme case of modification of the 1/6-
comma meantone temperament. Number 3 has a shade greater symmetry and
hence smaller deviation.



Temperaments 4 and 3 of Neidhardt’s Third-Circle have deviations very
similar to those of the temperaments shown in Tables 155 and 156. In fact,
their mean deviations are equal respectively to those of No. 2 and No. 3 in
these tables, but their standard deviations are higher because they contain
some sharp fifths. In No. 4 (Table 157), there are three fifths tempered by
1/12 comma and five by 1/6 comma; three fifths are pure, and one is 1/12
comma sharp. In No. 3 (Table 158), four fifths are 1/12 comma flat, six are
1/5 comma flat, and two are 1/5 comma sharp. (The same tempered fifths as
in No. 3 appear in our hypothetical version of Schlick’s temperament, but
differently arranged.)

Once again Marpurg has given the symmetric version of Neidhardt’s
temperaments, specifically of the second and third “circulating”
temperaments.

Logically we show next two temperaments (Tables 160 and 161) in
which eight fifths are flat by 1/12 comma and two by 1/6 comma, while two
are pure. Such a temperament is the fifth of Neidhardt’s Third-Circle.

The temperament shown in Table 160 comes so close to equal
temperament that in practice it could not be improved upon. But the canny
Marpurg has halved its deviation by using greater symmetry (see Table 161).

Another temperament of Neidhardt has the same deviations as those of
his fifth Third-Circle (Table 160). This is the fifth temperament in his Fifth-
Circle (Table 162), in which six fifths are flat by 1/12 comma and four by
1/5 comma, while two are sharp by 1/12 comma.

Table 158. Neidhardt’s Third-Circle, No. 3 (1/12-, 1/6-Comma)

i

3 1 N SR o S R N Y S

Names C° C"ip % g™ g™ Tg'd g Bg i gM 34" % g3 B°1 o

Cents 0 96 196 206 394 500 598 €98 706 896 1002 1092 1200
M.D. 3.3; S.D. 4.7

Table 159. Marpurg’s Temperament C (1/12-, 1/6-Comma)

. 3 1 4 . . i 3 _.B
Names C° ¢’ 3p~3 E%3 E‘"% o Fig _’hG" A 3 Bb*‘ B 2 (°
Cents 0 98 200 300 400 498 B00 700 BOO 898 1000 1100 1200
M.D.1.0; §D. 14



Table 160. Neidhardt’s Third-Circle, No. 5 (1/12-, 1/6-Comma)

I bial-0¥ g% A o
Names C® ¢’ %p % gU*i g Rp*s Ff g g’ '55'5 B""i B~% Co
Cents 0 100 200 300 398 502 598 700 800 900 1000 1008 1200
M.D. 1.3; 8.D. 2.0

Table 161. Marpurg’s Temperament B (1/12-, 1/6-Comma)

1 1

JE ke d W I L B
Names C°C ~3p~31 g™ 3ig3 p*lpfmigTe gfia! gbte BT (o
Cents 0 98 198 298 400 500 600 698 798 898 1000 1100 1200
M.D. .7; 8.D. 1.1

Table 162. Neidhardt’s Fifth-Circle, No. 5 (1/12-, 1/6-Comma

L - 1 _1 A - &
Names Co C*"Bp™% 0% =31 p*i pigdigh-ia-d poed pd co
Cents 0 100 200 208 402 502 600 700 BOD 898 1002 1102 1200
MlDi 1'3; S-i-D-l Eiu

The remaining temperaments in this group come from Marpurg. The first
(Table 163) of his temperaments in which some fifths are sharp contains six

fifths flat by 1/5 comma, and three fifths each flat or sharp by 1/12 comma.*!
Obviously, this is a variant upon the temperament in which six fifths are flat
by 1/6 comma, the other six pure. The mean deviation, 2.0, is the same, but,
as expected, the standard deviation is higher here. Other possible variants
would contain, in addition to the six fifths tempered by 1/6 comma, two
fifths each flat or sharp by 1/2 comma or pure; or four pure fifths and one
each flat or sharp by 1/12 comma.

The second temperament (Table 164) in this other set by Marpurg has
fifths that do not differ greatly from those in the previous temperament. Here
the six fifths are tempered by the unusual amount of 5/24 comma (shown as
the same fraction that did duty as 1/6 in his Temperament G, but really 5/24
this time), and three each are pure or 1/12 comma sharp.

In Marpurg’s Temperament A (Table 165), ten fifths are flat by 1/12
comma, and one each is pure or 1/6 comma flat. This is as far as one can go



in this direction, for the next step would be to have twelve fifths flat by 1/12
comma — that 1s, equal temperament.

The other limit for this sequence of temperaments by Marpurg is his own
Temperament F, already shown as Neidhardt’s Fifth-Circle, No. 3 (Table
147). In it there are no fifths tempered by 1/12 comma, and six fifths each
pure or flat by 1/6 comma. Just before it in the set comes Temperament E
(Table 166), which has two fifths flat by 1/12 comma, and five fifths each
pure or flat by 1/5 comma.

Marpurg’s Temperament E, shown in Table 166, has the least deviation
of the five temperaments in the set. Note the deviations again: A, 1.7,1.8; B,
0.7,1.1; C, 1.0,1.4; D, 1.3,1.6; E, 0.3,0.8. From the table for E it is easy to
see why its deviation is low: there are seven consecutive notes with cents
values ending in 00, and five ending in 02. Therefore the total deviation will
be only 4 cents, or a mean deviation of 0.3. In the other temperaments of the
set, some values end in 00 and others in 98 or 02. Butin no other
temperament do all the 00’s come together as they do in E. Therefore the
deviation is higher in the other temperaments. But it need not have been
higher. If in A the pure fifth is followed directly by the fifth flat by 1/6
comma, there will be only one note with an 02 ending, and eleven notes with
00. The fifths in B, C, and D can be so arranged that there will be
respectively 2, 3, and 4 consecutive notes with an 02 (or 98) ending, the
other endings being 00. Thus the minimum deviation (M.D. 0.3; S.D. 0.8)
will be the same for all five temperaments, but this will not always involve
the most symmetrical version of the fifths.

Table 163. Marpurg’s Temperament, No. 1 (1/12-, 1/6-Comma)

i 1

Names C° cﬁ'%n"fiﬁ Eh*'i!iu:'i F'"‘;' F#'ﬁa*ﬁcﬁ'ia"i B“*‘] B 1 co
Cents © 102 202 304 400 502 602 704 800 902 1002 1104 1200
M.D. 2.0; S.D. 24



Table 164. Marpurg’s Temperament, No. 2 (1/12-, 5/24-Comma)

TN P i NN | B o - o - N
Names c® c*"ip Hgltig ! pRpfig NGt iA B Np R o

Cents 0 D6 194 297 400 496 594 697 BOO 896 994 1097 1200
M.D. 3.0; 8.D. 3.1

i3
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Table 165. Marpurg’s Temperament A (1/12-, 1/6-Comma)

WY S | S L o X cad A
Names co cH"ip 3 gMig i ptE NG T a7t BPHE RT3 o
Cents 0 102 200 300 402 500 602 700 802 502 1000 1102 1200
M.D. 1.7; S.D. 1.8

Table 166. Marpurg’s Temperament E (1/12-, 1/6-Comma)

T
Names ¢® cf Tip Tgttip i pri pffig-fighi,i pitig R o
Cents 0 100 202 302 402 502 B02 700 EBOO 900 1000 1100 1200
M.D. 0.3; S.D 0.8

Table 167. Neidhardt’s Fifth-Circle, No. 6 (1/12-, 1/4-Comma)

7

'
Names C° nr:"'!"i'*'r:»'?-l E‘”HE‘“-':i F"*!’ ¥ ":G'fiﬁ"'ia*i Em% B ® o
Cents 0 100 196 300 400 496 800 700 796 900 1000 1096 1200
M.D. 2.7; 5.D. 3.3

Table 168. Neidhardt’s Fifth-Circle, No. 9 (1/12-, 1/4-Comma)

_2 A 1 -y ! -2 _1 .z 1 .5
Names C° ¢V IEYT g3 o pFigmgi i B R o
Centz 0 98 106 300 400 498 596 700 800 B98 996 1100 1200
M.D. 2.0, S.D. 2.4

The remaining nine temperaments are all by Neidhardt, and each
contains some fifths tempered by 1/4 comma. His Fifth- Circle, No. 6 (Table



167) has four fifths each flat by 1/4 comma or flat or sharp by 1/12 comma.
His arrangement is symmetric.

In Temperament No. 9 of this same set (Table 168), Neidhardt has three
fifths flat by 1/4 comma, three flat by 1/12 comma, and six pure. Again the
arrangement is symmetric. The deviation is lower than for the previous
temperament.

In Temperaments 7 and 10 (Table 169 and 170), Neidhardt divides the
comma into 4 or 6 parts. No. 7 is especially complicated, having eight fifths
flat by 1/5 comma and two sharp by 1/5 comma, and one each flat or sharp
by 1/4 comma. It would be difficult to construct a symmetric arrangement
from such an array, and Neidhardt has not attempted to do so.

Table 169. Neidhardt’s Fifth-Circle, No. 7 (1/6-, 1/4-Comma)

1

2 2
"% 3G G#"!A"&Em B-i Co

-] | 1 1
Names C°® cP"3p " Bg™3 ™1 §~3 pf
Cents 0 94 194 298 400 494 596 6968 B00 B892 0OCE 1098 1200
M.D. 3.3; S.D. 4.1

Table 170. Neidhardt’s Fifth-Circle, No. 10 (1/6-, 1/4-Comma)

_F o |
Names €° ¢f 8771 %3 g§ po phiglgfi gip i o
Cents 0 04 108 298 392 498 506 696 796 894 996 1094 1200
M.D. 3.0; S.D. 3.8

Table 171. Neidhardt’s Fifth-Circle, No. 10, Idealized

_5 _1 Lo R S Ny - L
Names €® ¢ 8p7@ gP*i g™ B po pf T*G%G’ N B 2 (¢
Cents 0 94 108 208 2308 408 508 €96 796 896 996 1096 1200

M.D. 1.3; §.D. 2.4



Table 172. Neidhardt’s Sample Temperament, No. 2 (1/12-, 1/6-, 1/4-Comma)

1

11 :
Names c* c'p HEY g B puptlgrigh 4iptEpE o
Cents 0 90 194 204 386 498 500 696 792 890 994 1088 1200
M.D. 6.3; S.D. 7.2

Temperament 10 (Table 170) is considerably simpler, with two fifths flat
by 1/4 comma, three by 1/5 comma, and the remaining seven pure. The
deviation is slightly lower than for No. 7.

But in No. 10 also the arrangement is far from symmetric. Letus see
what would result from an approach to symmetry. Although the deviation is
about halved in Table 171, it is possible that, as in the alphabetically named
temperaments by Marpurg, the least deviation for all four of these Neidhardt
temperaments will not occur with the most nearly symmetric arrangement of
the fifths.

In the remaining five temperaments in this group, Neidhardt has
tempered his fifths by 1/4, 1/6, and 1/12 comma. His second and third
“sample” temperaments (the first was just intonation) have relatively high

deviations.*? No. 2 (Table 172) has three fifths flat, by 1/4 comma, one by
1/6, two by 1/12, five pure, and one 1/12 comma sharp.

Neidhardt’s No. 3 (Table 173) is somewhat less erratic than No. 2, with
six pure fifths, and two each flat by 1/4, 1/5, or 1/12 comma. It also has a
lower deviation than No. 2.

Rather similar to the above sample temperaments is his Third-Circle, No. 1
(Table 174), in which five fifths are pure, two flat by 1/4 comma, one by
1/%, and four by 1/2.

Two temperaments from the Fifth-Circle are considerably better than the
three just mentioned. In No. 11 (Table 175) there are no pure fifths; two
fifths are flat by 1/4 comma, two by 1/6, five by 1/12, while three are 1/12
comma sharp.



Table 173. Neidhardt’s Sample Temperament, No. 3 (1/12-, 1/6-, 1/4-Comma)

4 _I. 1 - - _ . _ _5
Names C'-"C* 'hD 3 Eh+“E ; Fo F# i G i G’ 'H.IL ﬁEm E* C°
Cents 0 92 196 206 3883 408 592 €698 794 892 986 1090 1200
M.D. 5:7; 8.D. 6.4

Table 174. Neidhardt’s Third-Circle, No. 1 (1/12-, 1/6-, 1/4-Comma)

- 4 1 -3 _5 - S S A _3
Names C° o Ip iE™BE™T g0 plrig g EaATt g upi oo
Cents O 94 198 296 390 498 592 700 794 B94 998 1092 1200
M.D. 5.3; S.D. 5.9

Table 175. Neidhardt’s Fifth-Circle, No. 11 (1/12-, 1/6-, 1/4-Comma)

1 1 7 i
Names C° c*'in'i EXTE T gt F#'{i G"ﬁn:‘.':""g;a.'é Bb" B? (v
Cents 0 96 198 206 304 500 508 700 800 894 096 1098 1200
M.D. 2.7; 8.D. 3.2

Table 176. Neidhardt’s Fifth-Circle, No. 12 (1/12-, 1/6-, 1/4-Comma)

i -I _:!. _.l _l _] -_: _I,. -1
Names C® ¢t Hp i g'*ig™% po gl igmgfisipg?® i (o

Cents 0 100 198 300 396 498 600 700 798 900 996 1098 1200
M.D. 2.0; §.D. 2.3

In No. 12 (Table 176) there are six pure fifths, and two each flat by 1/4,
1/6, or 1/12 comma. This has precisely the same number of each size of fifth
as the third sample temperament, in which the deviation was almost three
times as great. The reason, of course, is to be found in the symmetry of No.

12.

Metius’ System



At the beginning of this chapter it was said that “by making the bounds
sufficiently elastic” all irregular systems could be classified. That statement
is severely tested by the final tuning method listed in this part of the chapter,
one presented by Adrian Metius. It was not possible to see Metius’ own
description, and Nierop, who gave the monochord, seemed to have been

puzzled by it himself.** Nierop has shown this monochord in two forms, one
from 1000 to 500 and the other from 11520 to 5760, with E the fundamental.
It is evident from the context that the second monochord was given simply
to show how its lengths have been increased or diminished by arithmetic
divisions of the syntonic comma, and that only the first table comes from
Metius directly.

By using Metius’ lengths, it is possible to reconstruct the tempering,
indicated by the exponents. Apparently there is only one pure fifth, C-G. The
fifths on B® and A are 1/12 comma flat, those on F and E 1/6 comma flat, on
B and C* 1/2 comma flat, and on G 3/4 comma flat! The fifths on D and F*

are 1/3 comma sharp, that on 1/3 comma sharp, and on G 1/2 comma sharp.
Metius’ system does not seem to follow any known system of
temperament or modification thereof. Specifically, it does not resemble the

meantone temperament, for only the thirds on B® and E are pure, the other
thirds varying in size up to 417 cents for G-B and 419 cents for A-C. But
there is no pattern apparent in the alterations, no planned shift from good to
poor keys. The fifth G-D, 3/4 comma flat, is almost as unsatisfactory as this
same fifth would be in just intonation. There is no good reason for both of

the fifths B-F” and C*-G" to be half a comma flat and then to have the fifth

G"-D" half a comma sharp. All in all, Metius has been just about as erratic as
he could be.

And yet the system, despite its irregularities, is much better than the
ordinary 1/4-comma meantone temperament and is slightly better than the
Pythagorean or the 1/6-comma meantone. That much we must grudgingly
admit. Metius’ temperament contains eight different sizes of fifth. But that is
not much less regular than many of the fairly good temperaments we have
shown that had four sizes of fifth, while Werckmeister’s Septe- nariumand
Neidhardt’s second sample temperament had five different sizes. And so let
us label it highly irregular, but not really unworkable.

“Good” Temperaments



With Metius’ enigmatic temperament we have described the last of our
irregular tuning systems, and are in a position to try to formulate a judgment
upon them. It is easy to see how the modifications of the Pythagorean, just,
or meantone system by the halving of tones, as in the systems of
Grammateus, Ganassi, or Artusi, would make these systems much more like
equal temperament. But it is more difficult to see what Werckmeister,
Neidhardt, and Marpurg were driving at in their multifarious attempts to
distribute the comma unequally among the twelve fifths.

If, as was pointed out at the beginning of an earlier section of this
chapter, our ideal is equal temperament, we shall praise highly some of the
beautifully symmetric systems of Marpurg and Neidhardt. But the trouble is
that they are too good! The deviations for most of them are lower than for a
piano allegedly tuned in equal temperament by the most skillful tuner. In
some cases these temperaments might have been successfully transferred
from paper to practice by calculating the number of beats for each of the
beating fifths. Since most of the fifths were to be tuned pure, such a method
might have been easier than that pursued today. These same temperaments
might have been reduced to distances on a monochord with slightly greater
ease than equal temperament could be, although it must be remembered that
usually even the most innocent set of cents values needs logarithmic
computation before yielding figures for a monochord. But it will be safe to
dismiss most of these oversubtle systems as useless, even for the age when
they were devised.

What do we have left? It will be of interest to consider which of his
twenty systems Neidhardt considered the best. In the Sectio canonis he had
said, “In my opinion, the first [of the circulating temperaments] is, for the
most part, suitable for a village, the second for a town, the third for a city,
and the fourth for the court.” The fourth was equal temperament; the mean
deviations of the other temperaments had been 4.0, 3.3, and 2.7 cents,
respectively.

In the much later Mathematische Abtheilungen Neidhardt presented
eighteen different irregular temperaments, together with just intonation and
equal temperament. He then attempted to choose the best of these twenty
tunings. He chose equal temperament, of course, and the two temperaments
(Third-Circle, No. 2, and Fifth-Circle, No. 8) that were identical with the
first and second circulating temperaments above. Now half of the rejected
temperaments had deviations lower than that of the second circulating



temperament (3.3), and a couple of others were just about as good. But none
of these was considered worthy in the final appraisal. Neidhardt had,
incidentally, changed his ideas somewhat as to the relative position of the
best temperaments: the Circulating Temperament, No. 2 (Fifth-Circle, No. 8)
is now considered best for a large city; No. 1 (Third-Circle, No» 2) for a
small city; and Third-Circle, No. 1, not included before, for a village.

If we examine the deviations of the major thirds in the three
temperaments Neidhardt himself considered superior, we quickly find why
he liked them. In the second circulating temperament (Table 155) the thirds
on Cand Fare 8 cents sharper than a pure third, and the sharpness gradually
increases in both directions around the circle of fifths until the three worst
thirds are 18 cents sharp. In the first circulating temperament (Table 151) the
third on C 1s only 6 cents sharp, and there is the same gradual increase until
the five poorest thirds are all 18 cents sharp. In the Third-Circle, No. 1
(Table 174), the third on C is 4 cents sharp, and the six poorest thirds are
either 18 or 20 cents sharp.

Werckmeister’s third temperament, the first of the three he has labeled
“correct” (Table 140), is much like the Neidhardt temperament just
mentioned. Its thirds on C and F are only 4 cents sharp, but the thirds of the

principal triads in the key of DP are all a syntonic comma, 22 cents, sharp.
Werckmeister himself said that some people who advocated equal
temperament held that “in the future... it will be just the same to play an air

in DY as in C.”** gut he held consistently “that one should let the diatonic

thirds be somewhat purer than the others that are seldom used.”*

A good comparison can be made between two temperaments of
Neidhardt, already mentioned as having fifths of four different sizes and the
same number of each size, but with a different arrangement. The Fifth-
Circle, No. 12 (Table 176) has a symmetric arrangement and a low mean
deviation, 2.0. Its thirds show no trend whatever from near to far keys, but
are sufficiently irregular to make this seem a poor attempt at equal
temperament. Not so its companion, the third sample temperament (Table
173), in which the third on C is only 2 cents sharp, whereas four of the five
poorest thirds are 20 cents sharp. To be sure, the deviation for this
temperament, 5.7, i1s almost three times as great as for the other one, and
there 1s a painful lack of symmetry. But the unsymmetric temperament is
“circulating,” and therefore deserves an honored place among the “good”
temperaments.



Thomas Young’s temperaments also deserve mention for their circulating
nature. His first temperament (Table 152) is equivalent to a temperament
with four pure fifths and four fifths each tempered by 1/6 or 1/12 comma. It
is constructed with scientific accuracy so that the thirds range in sharpness

from 6 cents for C-E to 22 cents, a syntonic comma, for F*-A”. Its mean
deviation is 5.3. On the other hand, there is the symmetric form of this
temperament, Marpurg’s D (Table 154), with a mean deviation of 1.3. And
the even better, nonsymmetric form, with a mean deviation of 0.3! But these
last-mentioned temperaments are curiosities only, whereas Young’s
differentiated admirably between near and far keys.

However, Young’s first temperament was too difficult to construct, as he
had described it with fifths tempered by 3/16 and “approximately” 1/12
syntonic comma. Therefore he substituted his second method (Table 145),
which was of the utmost simplicity, with six consecutive perfect fifths and
six consecutive fifths tempered by 1/6 ditonic comma. Its mean deviation
was 6.0. In it the thirds on C, G, and Dare each 6 cents sharp, whereas those

on F*C* and G are each 22 cents sharp. Neidhardt’s Fifth- Circle, No. 3
(Marpurg’s F) 1s the symmetric version of this temperament (Table 147),
with a mean deviation of 2.0. Again we may well say that Young’s version is
an excellent irregular temperament, while the symmetrical version represents
having fun with figures.

So many versions of good circulating temperaments have appeared on
these pages, each with its points of excellence, that we cannot resist the
temptation to close this chapter with an irregular temperament to end
irregular temperaments! Gallimard’s modification of the ordinary meantone
temperament, by a systematic variation in the size of the chromatic fifths,
was good enough in principle, but could not have been too successful
because of the large number of other fifths tempered by 1/4 comma.

What is really needed, in order to have a more orderly change in the size
of the thirds, is to have the variable tempering applied to all the fifths,
instead of to only five of them. Let the fifth D-A be the flattest, and let each
succeeding fifth in both directions around the circle of fifths be a little
sharper until the fifth on AP is the sharpest. Then the total parts to be added
willbel +2+3+4+5+6+5+4+ 3+ 2+1=36 parts. Since these parts
are to be added to 12 fifths, it is evident that D-A, the flattest fifth, will be
flatter than the fifth of equal temperament by three of these parts; the fifths

B-F# and F-C will be precisely the size of the equal fifth; and the sharpest



fifth, A-E®, will be larger than the equal fifth by three parts. The thirds will
vary as follows (the error being expressed as the number of parts below or
above the third of equal temperament): C-E, -8; G-B, -8; D-F*, -6; A-C*, -2:
E-G*, 2: B-D*, 6; G*-BP, 8; DY-F, 8; AP-C, 6; EP-G, 2; B-D, -2; F-A, -6.

We can choose the value for one part that will give the desired size of
thirds. If the part is one cent, the fifth D-A is 697 cents, practically a

meantone fifth, and the fifth AP-EP is 703, practically perfect; the best thirds,

C-E and G-B, are 392, 1/4 comma sharp; the poorest thirds, GP-BP and DP-F,
are 408, precisely a Pythagorean third.

Table 178 should have satisfied the desire of Werckmeister and his
contemporaries for a circulating temperament in which all the thirds are
sharp, but none more than a comma, and all the fifths are flat or pure. As the
size of the part is reduced, the tuning approaches equal temperament. When
the part is increased to 1 3/4 cents, the best thirds are pure. But the poorest
thirds are now 414 cents, about 5/4 comma sharp. Thus Table 178 probably
represents the limit of a tolerable temperament in the extreme keys. Since
the mean deviation for the entire series of temperaments formed in this
manner is precisely proportional to the size of the part, it would be easy to
devise a system with the deviation of any of the systems in this chapter, but
with a more orderly distribution of the errors, as regards common keys and
less-used keys.

The Temperament by Regularly Varied Fifths may be regarded as the
ideal form of Werckmeister’s “correct” temperaments and of Neidhardt’s
“circulating” temperaments and of all “good” temperaments that practical
tuners have devised by rule of thumb. Let us see, therefore, how closely it 1s
approached by these other temperaments. In Table 179, the deviations have
been computed, not only from equal temperament, but also from our
temperament with variable fifths. The table shows clearly that the
temperaments with greatest symmetry do not fit so well into the desired
pattern as do those that are much less regular in their construction. In
general, the temperaments with lowest deviation from the one ideal
temperament will have a high deviation from the other. Neidhardt’s second
circulating temperament has the unique position of ranking the same with
regard to both.



Table 177. Metius’ Irregular Temperament

Lengths 1000 040 896 837 800 749 704 608 628 596 563 530 500
Names E° F*8 pf -3 grigh 4t Bb"“B i c*‘ ct 3 D E1::"' 3 go
M.D. 0.5; 8.D. 11.8

Table 178. Temperament by Regularly Varied Fifths

Names C x D x E F x G X A X B C
Cents 0 92 197 207 302 500 591 B99 794 894 999 1091 1200
M.D. 5.8; 5.D. 6.6

Table 179. Deviations of Certain Temperaments

From Equal
Temperament From Varied Fifths
M.D.E SD. M.D. S.D.
Neidhardt’s Circulating, No. 1 4.0 4.8 2.1 2.3
No. 2 3.3 3.1 3.3 3.1
No. 3 2.7 2.9 4.2 1.7
Third-Circle, No. 1 5.3 5.9 1.2 1.5
Werckmeister’s

Correct, No. 1 g0 1.5 1.9 2.3
No. 2 9.2 107 4.7 5.7
No. 3 5.0 5.7 4.8 4.2
Neidhardt's Fifth-Circle Neo. 12 2.0 2.3 6.2 6.7
Sample, No. 3 5.7 6.4 1.5 1.8
Yourg's No. 1 5.3 5.9 1.7 1.9
Marpurg's Letter D 1.3 186 6.7 7.1
Young's No. 2 6.0 68 1.9 2.0
Neidhardt's Fifth-Circle, No. 3 20 2.0 2.0 5.8
Schlick’s (Hypothetical) 8.0 8.6 2.7 3.1

Neidhardt's -
Third-Circle, No. 3 33 47 3.0 4.8

Our hypothetical reconstruction of Arnold Schlick’s temperament had
the same size of fifths asNeidhardt’s Third-Circle, No. 3, but differently
arranged, and with a fairly high deviation. Observe that, with this other
standard of varied dissonance, Schlick’s temperament is even a little better



than Neidhardt’s. Of all the temperaments shown in our table, Neidhardt’s
Third-Circle, No. 1 seems to be the best, with our new standard, although
Neid- hardt himseli said it was best for a village! But it would have been
difficult to tune, and therefore Thomas Young’s Temperament, No. 2
probably cannot be surpassed from the practical point of view. Even so, the
highest honor must be paid to old Arnold Schlick, writing so long before
these other men, but stating as clearly as need be for his very practical
purpose, “Although they will all be too high, it is necessary to make the
three thirds C-E, F-A, and G-B better,... as much as the said thirds are better,
so much will G be worse to E and B.”

Table 180. Compass of the Lute (See Chapter VII.)

G Tuning A Tuning

01 2 3 4 5 6 T 8 0 1 2 3 4 5 6 1 B
1. GAP AaBPBCDObcY)y DEP ABP B CC*DP)D E® E F
2. DEPEF PG APG") A B® E F FfG cMab) a B B C
3. ABPRC c*psbpf) EF B c*opo*e?) E F Flc
4. F GP G AP A BPCbB) Cc pP G Ab A BPER (CP) Cc DP D ED
5. CDP DEPEFGUF) G AP D EPE P F*GP) 6 AP A BD
6. G AP ABPBCODY*) DE® ABPBCCHOY) D ED EF
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Chapter VIII. FROM THEORY TO PRACTICE

In our intensive study of scores of tuning systems we have failed to note
what may be learned from the music itself. Some of the theorists who have
written on tuning were able composers as well. When they described with
precision a particular division of the monochord, their theory may well have
coincided with fact. But the tuning theories of the mere mathematicians do
not carry so much weight. Nor do the rules of thumb the musicians more
commonly presented. All of these theories may be put into neat little
pigeonholes, but one can be sure that the practice itself, because of the
limitations of the human ear, was even more varied than the extremely
varied theories.

It is not to be expected that a study of the music will provide a precise
picture of tuning practice. It is to be used more by way of corroborating
what the theorists have said. Let us consider first the contention of
Vicentinothat the fretted instruments were always in equal temperament. In
general we can reach certain conclusions concerning tuning by examining
the range of modulation. However, this is not definitive as regards the lutes

and viols. Korte listed D*’s inlute music from 1508, an A* from 1523, and

many D®’s from 1529.! But the mere presence of notes beyond the usual 12-
note compass proves little, because the lutes were not restricted to a total
compass of 12 semitones. As shown in Table 180, the normal compass with

the G tuning was C to G” and for the A tuning from DP to D¥,

Ordinarily, lutes and viols had six strings, tuned by fourths, with a major
third in the middle. Thus the open strings might be GCFAD GorADG
B E A. It is easy to see here the prototype of Schoberg’s chords built by
fourths. Because of the perfect fourths, the fretted instruments might have
inclined toward the Pythagorean tuning, as the later violins have done.
Mersenne pointed out that the major third in the middle would then be sharp
by a comma.

But the strings of lutes and viols were tuned by forming unisons, fifths,
or octaves with the proper frets on other strings, thus making the tuning



uniform throughout the instrument. Vincenzo Galilei’? stated that if the
tuning were not equal, semitones on the A string (mezzana) of the lute
based on G would have the note names shown in Table 180. Since the frets
were merely pieces of gut tied straight across the fingerboards at the correct
places, the order of diatonic and chromatic semitones would have to be the
same on all strings. Thus the chromatic compass of a lute with six strings
and eight frets would be as shown in Table 180, if meantone temperament
had been used.

There might be some question for the G tuning regarding notes
produced by the 6th fret, since B would be a better choice than C® on the
4th string. But the remaining notes for the 6th fret agree somewhat better
with other notes in the compass than the equivalent sharped notes would
have done. Galilei pointed out that GP (4th string, 1st fret) was not a pure
fifth to C* (3rd string, 4th fret), nor was D® (5th string, 1st fret) a pure
octave to the C*. He might have added that D (1st string, 6th fret) was not
a pure octave above the C” either.

It is easy to multiply examples of unsatisfactory intervals on the
unequally tuned lute in G. (Read them a tone higher for the A tuning.) Try
building major triads upon the notes of the 6th string, starting with B. C,
Db, and EP are satisfactory as roots also, but false triads are generated on B
and D. On the 5th string, starting with D, the satisfactory triads are on E°, F,
and AP; false triads on D, E, G®, and G. On the 4th string, starting with G,
the only unsatisfactory triad is on C°. On the 3rd string, starting with C, the
other satisfactory triads are on D, E®, and F, with false triads on C* and E.
Thus, of 26 major triads in close position, only 17, about 2/3, are available.
Some of the triads, those on G, D, and A, unsatisfactory in the lower octave,
can be played correctly in the higher octave. But the complete E and B
major triads are unavailable anywhere, because there are no G and D —
unless, of course, the 6th fret runs to sharps rather than to flats.

As 1llustrations of incongruous notes on particular frets, let us examine
some of the Austrian lute music of the sixteenth century, as found in
Volume 18 of the Austrian Denkmaler. The first collection represented is
Hans Judenkiinig’s Ain schone kiinstliche Underweisung (1523), His third
Priamell is modal, but often suggests C minor. Like most of the German and
Austrian composers, Judenkiinig used the A tuning of the lute. In bar 3 the



note a® appears as the 4th fret on the 2nd string, indicating that this fret has

a flat tuning (see Table 180). But in bar 4 there is a b and in bar 19 a ¢,
both of which belong to the sharp tuning for this fret.

For Judenkiinig’s fourth Priamell the editor has put the signature of
three sharps, as an indication of the prevailing sharpness. This even extends

to the 6th fret, which would then include an e*. Actually there is an ¢ in
the music, and no f’. Therefore it would have been possible to play this
piece with an unequal temperament, but not without changing the 6th fret
from its normal flat tuning.

Simon Gintzler’s fifth Recercar (1547) used the Italian G tuning. Here

the 6th fret has a flat tuning, as shown by a®and a very frequent . But in

bar 10 there is a b instead of the c® belonging to the flat tuning. In
Gintzler’s setting of Senfl’s song “Vita in ligno moritur,” the 6th fret is

again flat, but in bar 15 both a® and b occur.

The a® and b also occur several times in Bakfark’s Fantasias (1565).
More interesting is his setting of “Veni in hortum meum, soror mea” (1573).

In bar 50, d” occurs as the third of the B major triad, indicating a sharp
tuning for the 6th fret. This means that f” is not available on this fret; but {
does occur in bar 56 and elsewhere. In bar 62 the complete C minor triad

occurs: ¢’ e® g ¢"with the e the 4th fret on the 3rd string. But this fret must

have had a sharp tuning, since the notes d*, g *, and ¢" occur on it with
great frequency.

It would be easy to multiply examples, from the music of Italian,
French, and Spanish composer. Those that have been given are sufficient to
show that in the golden age of lute music the composers were indifferent to
discords that would have arisen if an unequal temperament had been used.
The example from Judenkiinig occurs so early in the century (1523) that it
seems very probable that lutes and viols did employ equal temperament
from an early time, perhaps from the beginning of the sixteenth century.

We need not be too much concerned with what the equal temperament
for the fretted instruments was really like. It might have been the
Grammateus-Bermudo tuning — Pythagorean with mean semitones for the
chromatic notes. It might have been the Ganassi-Reinhard mean semitones
applied to just intonation, or Artusi’s more subtle system of mean semitones
in meantone temperament. Or the frets might have been placed according to



Galiler’s 18:17 ratio, or (correctly) according to Salinas’ ratio of the 12th
root of 2. In any case, it would have been a good, workable temperament.

Tuning of Keyboard Instruments

In the early sixteenth century Schlick and Grammateus described
systems for keyboard instruments that came close to equal temperament,
and the correct application of Lanfranco’s tuning rules must have resulted in
equal temperament itself. But these systems were anomalous for a day
when few accidentals were written. Examples of organ music from the late
fifteenth and the entire sixteenth century are found in numerous collections,
such as Schering’s Alte Meister aus der Friihzeit des Orgelspiels; Volume 1
of Bonnet’s Historical Organ Recitals; Kinkeldey’s Orgel und Clavier in der
Musik des 16. Jahrhunderts; Volume 1 of Margaret Glyn’s Early_English
Organ Music; Volume 3 of Torchi’s L’arte musicale in Italia; Wasielewski’s
Geschichte der Instrumentalmusik im 16. Jahrhundert; Volume 6 of the
Italian Classics series.

With the exception of the English composers, the compass used by all

these composers was less than 12 notes — EP-F# or BP-C*. Both Tallis

andRedford had D" in one piece and EP in another, thus posing a problem
with regard to the tuning. But except for them, there was no problem about
performance: all of this organ music could have been played on an
instrument in meantone temperament.

Even 12 of Schlick’s 14 little pieces (Monatshefte fiir Musikgeschichte,

1869) lie within a compass of EP-C”. One of the remaining pieces has an
Ab: the other, G*. Since Schlick had directed that the wolf be divided

equally between the fifths C*-G* and AP-EP, these notes would have caused
him no difficulty. Perhaps Tallis and Redford were dividing the error
similarly.

Much the same can be said for the clavier music of this period. Merian’s
Der Tanz in den deutschen Tabulaturbiihern (Leipzig, 1927) contains about
200 tiny keyboard pieces, and Volume 2 of Bohme’s Geschichte des Tanzes

about 20 more. None exceeds the EP-G" compass. The famous English
collection of virginal music, Partheni a, reveals nothing beyond the fact that
Byrd preferred EP, the younger composers Bull and Gibbons, D*. In
Margaret Glyn’s edition of Gibbons’ Complete Keyboard Works, five of the




33 virginal pieces have a D¥, but only two contain Eb’s, one of these, a

Pavan in G minor, having also an AP. But that does not necessarily mean
that Gibbons did not use the meantone temperament. The virginals could

have been set for an AP at one time and for a D” at another — a point that

will be discussed at some length later, More significant are the AP and D*
that occur in a G minor Fancy for organ by Gibbons. Unless Gibbons’
tuning was appreciably better than the meantone temperament, this Fancy

would have had some very rough places. This same AP-D* was used in

Tarquinio Merula’s Sonata Cromatica, a work having a modern ring

because of its chromaticism.>

Just a word about chromaticism. Other things being equal, a piece that
contains many chromatic progressions is more likely to have an excessive
tonal compass than one that is not chromatic. But, since there are 12

different pitch names in the meantone compass, EP-G¥, it is entirely possible
for a chromatic piece to lie within it. A Toccata by Michelangelo Rossi, for
example, published in 1657, is very chromatic, but carefully remains within

the meantone bounds.*

The great English manuscript source of the early seventeenth century,
the Fitzwilliam Virginal Book, is a monument to the boldness of the clavier
composers of that time. Naylor’ has given a fascinating and exhaustive
account of the music in this collection, and has shown that many of the
progressions containing accidentals resemble modulations to our major and
minor keys more than they do modal cadences. Twenty-five of the 297
compositions contain D*'s, with Bull, Byrd, Farnaby, and Tomkins in the
lead. Bull, Farnaby, Tisdall, and Oystermayre have A*’s also.

With one exception, the largest compass in the entire collec tion is that
of Byrd’s “Ut, re, mi, fa, sol, la,” which extends from A® to D*. That
exception, of course, is John Bull’s composition on the hexachord, with the
same title as Byrd’s. It overlaps the circle of fifths by six notes, with the
compass C°-A#. Bull states his Canto Fermo first on G and rises by tones
through A, B, D EY, and F. He then begins afresh with AP B® C,D,E,F,
and G. An enharmonic modulation occurs at the beginning of Section 4,
where the chord of F* is quitted as GP. The editors of the Fitzwilliam
Virginal Book were so impressed with this passage that they correctly stated
in a footnote,” This interesting experiment in enharmonic modulation is




thus tentatively expressed in the MS.; the passage proves that some kind of

‘equal temperament’ must have been employed at this date.”®

This remarkable composition is not a mere juggling with sounds, as
Naylor has alleged. It has real musical interest, and because of its sustained
style seems better adapted to the organ than to the clavier. But do not try to
build up a theory of the use of equal temperament in England during Queen
Elizabeth’s reign on the basis of Dr. Bull’s composition. Remember that it
stands practically alone. It seems almost as if Bull had written a Fancy for
four viols, and then, led by some mad whim, had transcribed it for virginals
and tuned his instrument to suit.

One of the boldest of the keyboard composers of the early seventeenth
century was Frescobaldi, an exact contemporary of Gibbons. Of his 31

works for organ and clavier,’ three contain D, three a D”, and one an A”.
One of the most interesting of these is the Partite sopra Passacagli for organ,

with a compass of DP-G. The G* is the third of the dominant triad of A

minor, and the D the third of the subdominant triad of F minor. Hence the
ordinary meantone temperament would be inadequate for Frescobaldi.

In decided contrast to Frescobaldi are Sweelinck (German Denkmadler,
IV Band, 1. Folge) and Scheidt (German Denkméler, I Band). Sweelinck’s

Fantasia Cromatica, with E>-D* compass, was the only one of 36 pieces
examined to exceed 12 scale degrees, and Scheidt, although not averse to
chromaticism and rather fond of D*’s, had no single composition, of 44
examined, with more than 12 degrees.

As we reach the middle of the seventeenth century, we shall have to
differentiate more carefully between music for organ and for clavier. The

organ had a fixed compass, usually E°>-G*, but perhaps B°-D* or AP-C*.

Even if the composer did not employ A® and D, for example, in the same
composition, as Gibbons and Merula had done, the presence of these notes
in separate compositions was an indication that he was using at least a

modified version of the meantone temperament.®

Not so for clavier. A study of the accidentals in clavier music suggests
that tuning practice must have accommodated itself to the music to be
played. The performer would retune when changing from sharp to flat keys.
Bach could tune his entire harpsichord in fifteen minutes; to change the
pitches of only a couple of notes in each octave would have taken a much
shorter time. Moreover, all the movements of the common dance suites



were in the same key, and this helped to restrict the compass to not more
than twelve different pitch names, even if that compass was not the

conventional EP-G*,
The theorists give us little information about the variable tuning of
claviers. Mersenne hinted at the practice. He had given two keyboards in

just intonation, the first with sharps only (except for BP) and the second
with flats. Current practice, he said, was represented by either of these, but
with tempered, not just, intervals. Some eighty-five years later Kuhnau
wrote to Mattheson that the strings of his Pantalonisches Cimbal (a large
keyed dulcimer) vibrated so long he could not use equal temperament upon
it, but had to “correct one key or another” when turning from flats to sharps.

More valuable evidence of the variable tuning practice for clavier
comes from the music itself. Of Froberger’s 67 clavier compositions
(AustrianDenkmadler, VI, 2. Theil, and X, 2. Theil), 6 use 14 scale degrees,
10 use 13, and the remaining 51 use 12 or fewer. But only half (26) of the
51 lie wholly within the usual meantone compass. His accidentals range

altogether from GP to E*.

Similarly, Johann Pachelbel’s clavier music (Bavarian Denkmiler, 2.
Jahrgang, 1. Band) suggests a variable tuning. Of 49 compositions
examined, only 2 have more than 12 scale degrees. But of the remaining 47,
only 21, or less than half, lie within the E>-G compass, and the total range is
from DP to B* An exception among Pachelbel’s works, the Suite in AP
(Suite ex Gis), beginning with anAllemand in AP minor, contains an
enharmonic modulation at the point where the F® major triad is treated as E
major by resolving upon A minor, just before a cadence in E® major! With a
range from D®° to B for this single movement, it seems evident that for the
moment Pachelbel was as reckless as Bach.

Kuhnau’s works (German Denkmdler, IV Band, 1. Folge) give musical
evidence of variability to buttress what he wrote to Mattheson. Of his 28
clavier works, 3 of the 6 Biblical Sonatas have a compass of 14 scale
degrees; the other 3 sonatas and 5 other works have 13. But of the
remaining 17 works that have no more than 12 different pitches in the
octave, only 2 lie wholly within the E-G” tuning. Actually Kuhnau
preferred equal temperament upon the clavier. But most of these works
would have been passable in meantone temperament if he had “corrected”
some of the notes, just as he did on the Pantalon.



Of Frangois Couperin’s 27 charming suites for clavecin, only 6 have no
more than 12 different scale degrees. They are all in the minor key, and in
each the flattest note is a semitone higher than the keynote, as No. 8 in B

minor has the compass C-E”. Twenty of the remaining 21 suites exceed the
circle of fifths by one or two notes. But here again it is characteristic to
have the flattest note a semitone above the tonic. For example, all five

suites in D major-minor have the precise compass EP-A*. Couperin leaves a
strong impression that the dissonance inevitable in the slightly extended
compass was a coolly calculated risk, and that a variable meantone tuning

was used for these suites also. The one exception is No. 25, in E® major and

C major minor. The compass here is 15 scale degrees, from G to D¥. This
would, perhaps, be carrying piquancy too far.

There is ample evidence that in Italy during the first half of the
eighteenth century equal temperament or its equivalent was being practiced.
Three composers represented in the Italian Classics had, in a particular
composition, a similar compass, 15 notes in the overlapping circle of fifths.

They are Zipoli, D’-D, Vol. 36; Serini, C®-C*, Vol. 29; and Durante, G°-
G", Vol. 11. Of 70 of Domenico Scarlatti’s delightful little “sonatas,”” 45, or
more than half, overlap the circle. In one sonata he had a compass of 18

degrees, DY-B*: in another, 17, GP>-A". All of these men upon occasion
wrote notes so remote from the tonal center that meantone temperament
seems wholly out of the question. Both Serini and Durante used Fx, and
Scarlatti, Cx.

At this time, in Germany, Telemann was advocating a form of multiple
division with 55 notes in the octave, for a clavier with only 12 notes in the
octave, which was practically the same as Silbermann’s 1/6-comma variety
of meantone temperament. We might expect, therefore, that his
compositions for clavier would not exceed the bounds of the meantone
temperament. However, Telemann’s 36 Clavier Fantasies have a total range

of GP- B, the same as for Couperin’s suites. Only 8 of the fantasies overlap
the circle, by one or two degrees. Of the remaining 28, only one lies within

the ordinary meantone bounds, E°-G*. The others swing to the sharp side or
the flat side, depending upon the key. Thus Telemann undoubtedly used the
meantone temperament, but with variable intonation.

It has been suggested in the preceding pages that composers such as
Bull, Gibbons, Frescobaldi, and Domenico Scarlatti, whose works exceed




the meantone bounds by several scale degrees, were not using the meantone
temperament. Were they, then, using equal temperament? That question is
difficult to answer, especially since there was a type of tuning that would
have been fairly satisfactory in many of these cases. The title of Bach’s
great collection of preludes and fugues, Das wohltemperirte Clavier, has
usually been taken to mean, as Parry called it,” The Clavichord Tuned in
Equal Temperament.” But even in Bach’s day there was a good German
phrase for equal temperament — “die gleichschwebende Temperatur,” “the
equally beating temperament.” Bach’s title might better be paraphrased,
“The Well-Tuned Piano.”

Now, “well-tuned” had been used in a somewhat technical sense by the
Flemish mathematician Simon Stevin, over a century before the first
volume of the “48” was compiled in 1722, and by Bach’s great French
contemporary Rameau also, with a meaning nearly the same as Parry has
given to it. To German theorists, however, there was a distinction. Andreas
Werckmeister has erroneously been hailed as the father of equal
temperament because of the title of one of his works on tuning,
Musicalische Temperatur, and because of Mattheson’s eulogy. Mattheson
had said,” And thus the fame previously divided between Werckmeister and
Neidhardt remains ineradicable — that they brought temperament to the

point where all keys could be played without offense to the ear.”!?
(Underscoring is the present author’s.) Werckmeister himself has used the
phrase “wohl ternperirt” as follows: “But if we have a well-tuned clavier,
we can play both the major and minor modes on every note and transpose
them at will. To one who is familiar with the entire range of keys, this
affords variety upon the clavier and falls upon the ear very pleasantly.”
What did Werckmeister mean by these words? To use Neidhardt’s
phrase, he meant a “completely circulating genus,” that is, a tuning in which
one could circumnavigate the circle of fifths without mal de son, Both men,

as we have seen in Chapter VII, presented a number of different
monochords, with the “foreign” thirds beating as much as a comma.

Werckmeister said of them, “It would be very easy to let the thirds DP-F,

GP-B, AP-C beat less than a full comma; but since thereby the other, more
frequently used thirds obtain too much, it is better that the latter should
remain purer, and the harshness be placed upon those that are used the
least.” Elsewhere. Werckmeister described equal temperament with fair
accuracy, but demurred, “I have hitherto not been able to approve this idea,



because I would rather have the diatonic keys purer.” And so to
Werckmeister “well-tuned” meant “playable in all keys — but better in the
keys more frequently used.”

If, then, a composer exceeded twelve different pitch names rarely and
then only by a few scale degrees, his works could have been played to good
advantage on a “well-tuned clavier.” Composers like Bull and Pachelbel
and Scarlatti, however, who effected enharmonic modulations and used
double sharps, would have been badly served even by Werckmeister’s best-

known “correct” temperament, in which the key of DP had Pythagorean
thirds for all its major triads. Equal temperament was needed for their
works.

An equal temperament was needed for the keyboard works of Bach,
both for clavier and for organ. It 1s generally agreed that Bach tuned the
clavier equally. Actually he was opposed to equal temperament, in the sense
that there must be strict mathematical ratios, which are first applied to the
monochord and from there to the instrument to be tuned. Of course he was
right. The best way to tune in equal temperament, as Ellis stated, is to count
beats. Have you ever heard of a contemporary piano tuner who carried a
monochord with him? And yet the underlying theory must be correct or the
result will be unsatisfactory: Ellis could not have given his practical tuning
rule with assurance had he not been able to calculate accurately how far its
use would fall short of the perfection implied by the term” equal
temperament.”

The organ works of Bach show as great a range of modulation as his
clavier works do. Except for a dozen chorale preludes in the Orgelbiichlein,
there are only 3 organ works of 148 examined that do not overstep the
compass of the conventionally tuned organ. The compass of individual
organ pieces is very frequently 13, 14, and 15 scale degrees, and even 18,
19, and 21 degrees have been observed. The compass of Bach’s organ

works as a whole is EP*-Cx, 25 degrees! In these works is a host of
examples of triads in remote keys that would have been dreadfully
dissonant in any sort of tuning except equal temperament. For
corroboration, if corroboration be necessary, we need but note the advice
that Sorge gave to the instrument-maker Silbermann, two years before
Bach’s death. Sorge, a proponent of equal temperament, said: “In a word —
Silbermann’s way of tempering cannot exist with modern practice. I call
upon all impartial and experienced musicians — especially the world-famous



Herr Bach in Leipzig — to witness that this is all the absolute truth. It is tobe

desired, therefore, that the excellent man [Silbermann] ... should alter his

opinion regarding temperament . . . .” !l

Just Intonation in Choral Music

We have seen that just intonation exists in many different forms, and

that the best version, if modulations are to be made to keys beyond B and
A, comes near the Pythagorean tuning, as with Ramis. The contention has
often been made that unaccompanied voices sing in just intonation.

Zarlino!? listed instruments in three groups, each with a different tuning:
keyboard instruments in meantone temperament; fretted instruments in
equal temperament; voices, violins, and trombones in just intonation. His
argument was that since intonation is free for these three last-named groups,
they would use an intonation in which thirds and sixths are pure. Three
hundred and forty-eight years later Lindsay Norden said, “As we shall
show, no singer can sing a cappella in any temperament.... A cappella

music, therefore, is always sung in just or untempered intonation.” 13
Let us see what is implied by these statements. In the first place, singers

must be able to sing the thirds and sixths purely.'* This may sound like a
self-evident truth, too absurd to discuss. But scientific studies of intonation
preferences show that the human ear has no predilection for just intervals,

not even the pure major third.!> Alexander Ellis declared that it was
unreliable to tune the pure major thirds of meantone temperament directly,
preferring results obtained by beating fifths. Hence the singers must be
highly trained to be able to sing the primary triads of a key justly.

In the second place, the singers must be able to differentiate intervals
differing by the syntonic comma, 1/9 tone. We have seen that in Ptolemy’s
version of the syntonic tuning the D minor triad, the supertonic triad of the
key of C major, will be false. If, as Kornerup and others advocate, the
Didymus tuning is used instead of Ptolemy’s, the dominant triad will be
false, which is a greater loss. But a singer trained to niceties of intonation
would have to vary his pitch by a comma in such critical places, and thus
save the situation. Very good. But studies at the University of Iowa!® have
shown that there is no such thing as stability of pitch among singers:
scooping is found in almost half the attacks and averages a whole tone in



extent; portamento is very common; the sustained part of the pitch varies
from the true pitch by a comma or more in one-fourth of the notes analyzed.
If we add to these errors the omnipresent vibrato, with an average extent of
a semitone, it would seem that the ambitious and optimistic director of an
unaccompanied choir has an impossible task.

Let us assume, for the moment, that it is possible fora choir to sing
without these pitch fluctuations, that all its members can sing a note a
comma higher or lower when necessary, and that the director has analyzed
the music and marked the places where the comma shifts are to be made.
What have we then? Strangely enough, if the harmony consists of simple
diatonic progressions, typical of the seventeenth and eighteenth centuries,
the pitch will probably fall. With modal progressions, as in Palestrina, it is
more likely to remain stationary. According to Gustav Engel, if one were to
consider possible comma shifts whenever a modulation occurs, most of the
recitatives in Mozart’s Don Giovanni would fall from one to four commas if
sung unaccompanied, and the final pitch of the opera would be five or six

semitones flatter than at the beginning, A or A’ instead of D!

If the music contains much chromaticism and remote modulations, even
the best-trained choir would probably flounder. And yet there are choral
compositions of the sixteenth and early seventeenth centuries that seem
strikingly modern because of these very features. De Rore’s madrigal
“Calami sonum ferentes” for four basses (c. 1555) begins with an ascending
chromatic scale passage treated in imitation. Later it has a remarkable

faburden of inverted major triads a semitone apart — G F¥ G AP G. Caimo’s
madrigal “E ben raggion” (1585) contains a very smooth example of
modulation in which the F* major triad is heard, and, 24 bars later, its
enharmonic equivalent, the G major triad. In just intonation the latter triad
would be a large diesis (41 cents, or almost a quarter tone) higher than the
former.

And what of Marenzio’s madrigal “O voi che sospirate a miglior note,”
where there is a modulation around the circle of fifths from C to GP, an
enharmonic change from GP to F¥ and further modulation on the sharp
side? According to Kroyer, from whom all these examples have been taken,
this is the first time in music that the circle of fifths has been completed.!’
Could Marenzio’s madrigal have been sung in just intonation?



Gesualdo has the respect of the moderns because of his harmonic
freedom. The best known of his chromatic madrigals is the “Resta di darmi
noia,” in which he passes from G minor to E major, and then sequentially

from A minor to F* major. Listen to the recording of this madrigal by a
group of unaccompanied singers in the album 2000 Years of Music and you
will probably agree that the attempt to record it was a noble experiment and
nothing more.

Of course the point that is missed by all these rabid exponents of just
intonation in choral music is that this music was not ordinarily sung
unaccompanied in the sixteenth century. A cappella meant simply the
absence of independent accompaniment, not of all accompaniment. If a
choir usually sang motets accompanied by an organ in meantone
temperament, it would quickly adapt itself to the intonation of the organ. If
this choir were in the habit of singing madrigals accompanied by lutes or
viols in equal temperament, its thirds would be as sharp as the thirds are
today. Kroyer thought the pronounced chromaticism of the Italian
madrigalists showed the influence of keyboard instruments. On the
contrary: it must have been the fretted instruments, already in equal
temperament, that influenced composers like de Rore, Caimo, Marenzio,
and Gesualdo to write passages in madrigals that could not have been sung
in tune without accompaniment.

Present Practice

What is tuning like today? A generation ago, Anglas made some

excellent observations about the intonation of the symphony orchestra.!®
The pedals of the harp are constructed to produce the semitones of equal
temperament; therefore, once the harp is put in tune with itself, it, and it
alone of all the instruments, will be in equal temperament. The violins show
a tendency toward the Pythagorean tuning, both because of the way they are
strung and because of the players’ tendency to play sharps higher than
enharmonic flats. Furthermore, in a high register both the violins and the
flutes are likely to play somewhat sharp for the sake of brilliance. He might
have added that the brass instruments, making use of a more extended
portion of the harmonic series than the woodwinds, have a natural
inclination toward just intonation in certain keys. The result is “a very great
lack of precision,” with heterogeneous sounds that are a mixture of “just,



Pythagorean, tempered, or simply false.” Of course the ears of the audience,
trained for years to endure such cacophony, actually are pleased by what
seems to be a good performance.

L1. S. Lloyd has written an article with the frightening title “The Myth

of Equal Temperament.”!” It would be pretty discouraging for the present
author to have done extended research upon the history of equal
temperament only to learn at last that his subject matter was in the class
with the story of Cupid and Psyche! But Lloyd has not actually consigned
equal temperament to the category of the tale of George Washington and the
cherry tree. His argument is against rigidity of intonation, the rigidity that is
inherent in any fixed system of tuning. He holds that the players in a string
quartet or the singers in a madrigal group are likely to be guided by the
music itself as to what intonation to wuse, sometimes approaching
Pythagorean intervals when melodic considerations are paramount or just
intervals when the harmony demands it. And undoubtedly this freedom of
intonation, plus a well-defined vibrato, does increase the charm of these
more intimate chamber ensembles.

Not even the piano is exempt from the charge of inexactness. Three-
quarters of a century ago Alexander Ellis showed that the best British tuners
of his day failed to tune pianos in equal temperament within desirable limits
of error. There is no reason to believe that modern British tuners, or
American ones either, are doing a better job than was done then. Schuck
and Young even show that, because of the inharmonicity of the upper
partials of the piano, a tuner is bound to tune the upper octaves
progressively sharper and the lowest octaves progressively flatter than those

in the middle range.?? Their theoretical findings agree with measurements
Railsback had already made of pianos tuned in equal temperament.
However, the psychologists tell us that “stretched” octaves at top and
bottom are a concomitant of normal hearing. Therefore the sharpness and
the flatness respectively would probably be heard as correct intonation.

Now all of this paints a dismal picture. Apparently nobody — not the
pianist, nor the singer, nor the violinist, nor the windplayer — is able to
perform in correct equal temperament. The harpist is left sitting alone, but
no doubt he will be joined by the Hammond organist, whose instrument
comes closest to the equal tuning.

This contemporary dispute about tuning is perhaps a tempest in a teapot.
It is probably true that all the singers and players are singing and playing



false most of the time. But their errors are errors from equal temperament.
No well-informed person today would suggest that these errors consistently
resemble departures from just intonation or from any other tuning system
described in these pages. Equal temperament does remain the standard,
however imperfect the actual accomplishment may be.

The trend of musical composition during the late nineteenth and the first
half of the twentieth century has been to exploit the resources of equal
temperament, of an octave divided into 12 equal parts, and hence also into
2, 3, 4, or 6 parts. To ascertain how far back this trend extends is not the
purpose of this book. It would be foolish to deny that this modern trend is
different in kind from the progressions of classic harmony, progressions that
were almost as common in 1600 as in 1800. But it may be denied that these
classic progressions were intimately connected with the meantone
temperament, as has often been alleged; for we have seen that the original
1/4-comma meantone system did not even reign supreme in 1600, much
less in 1700 or 1750. In 1600 there were half a dozen or more ways to tune
the octave; in 1732 Neidhardt gave his readers a choice of twenty!
Moreover, there is every reason to believe that in practice there were far
greater departures from these extremely varied tuning methods of the
seventeenth and eighteenth centuries than there are from equal temperament
today.

In the very nature of things, equal temperament has undergone
vicissitudes during the last four hundred years, and will continue to do so.
Perhaps the philosophical Neidhardt should be allowed to have the last
word on the subject: “Thus equal temperament carries with itself its comfort

and discomfort, like the holy estate of matrimony.”?!
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193-197, 199-202.

temperament, equal: geometrical and mechancal approximations, 49-55.

temperament, equal: numerical approximations, 55-87.

temperament, history of, 1-14.

temperament, meantone, x, 9—11, 25-44, 71, 108, 117, 126, 144, 178, 191-194, 199, 202.

temperament, meantone: approximations, 29-31, 43.

temperament, meantone: modifications. See irregular systems: modifications of meantone.

temperament, meantone, varieties of, xii, 31-44, 133; 1/3 comma, 9, 33-35, 51, 115; 1/5, vii, 35 f,
47,122, 136; 1/6,42 1, 114, 126, 137, 148, 170, 178, 193; 1/7, 43; 1/8, 43; 1/9, 44; 1/10, 44; 2/7, 9,
32 f, 35,37,46, 50, 121, 123; 2/9, 36 f, 121; 3/10, 40 f; 5/18, 41.

temperament, meantone, varieties of: correspondences with equal multiple divisions, 126.

temperament,“paper,” 151, 156, 178.

temperament, regular, xi, 32—44, 92, 114—-133.

Le tempérament, 58.

tempérament anacritique, 126.

temperaments largely Pythagorean, 12, 61, 151-156.

Tempelhof, G. F., 157.

Temple Church in London, 108.

Theatri machinarum, 144.

Théorie acoustico-musicale, 168.

A Theory of Evolving Tonality, 115.

theory of just intonation, 102—105.

theory of multiple division, 128—132.

Thompson, P., 112.

Tisdall, W., 190.

Tomkins, T., 190.

The Tonometer, 120.

Das Tonsystem des Italieners Zarlino, 123.

Torchi, L., 188.

Toscanello in muSica, 26.

Traité de 1’accord de ’espinette, 47.

Traité de 1a viole, 107.

Transponir-Harmonium, 113.

Treatise ... of Harmony, 47, 125.

A Treatise of Musick, 145.

trigonometry, 65-67.




trombone, 197.

Tsai-yii, Prince Chu, 7, 77-79.

tuning, xii. See Greek tunings, just intonation, Pythagorean tuning, etc.
tuning forks, 49.

tuning, history of, 1-14.

tuning pipe, 85-87.

tuning today, 199-202.

Two Thousand Years of Music, 199.

“Uber mehr als zwoélfstufige gleichschwebende Temperaturen,” 122.

“Uber musikalische Tonbestimmung und Temperatur,” 125, 129.

“Uber wissenschaftliche Begriindung der Musik durch Akustik,” 102.

unequal temperament, xii. See temperament, meantone, and temperament, meantone, varieties of. See
also irregular systems.

Van de Spiegeling der Singconst, 28, 76 f.

Varella, D., 58.

Variety of Lute-Lessons, 153.

varieties of meantone temperament. See temperament, meantone, varieties of.
Verhandlung van de Klokken en het KlokkeSpel, 7.

Verheijen, A., 28, 35, 122.

Versuch iiber die musikalische Temperatur, 43, 53, 65, 60, 100, 156, 172.
vibrato, 198, 200.

The Vibrato, 198.

Vicentino, N., 8, 11, 25,27, 37, 51, 117-121, 144, 154, 185.

vihuela, 28, 164 f.

viol, 68, 11 £, 40, 46, 50, 58, 141, 185, 187 £, 190, 199.

violin, 4, 8, 46, 59, 120, 126, 185, 197, 200 f.

“Violin Intonation,” 197.

Le violon de Lully a Viotti, 71.

Violoncell Schull, 58.

Violoncello, 58 f.

virginals, 189-191.

Vitruvius, M., 50 f.

voices, 126, 146, 196—199.

Wang Pho, 152 f.

Warren, A., 120.

Wasielewski, J. W. von, 188.

Wedell, P. S., 129.

Werckmeister, A., 12 f, 107, 156184 (passim), 194 f.
White, W. B, 48 f.

Wiese, C. L. G., Baron von, 158 f.
Williamson, C., 74-76.

wind instruments, 7, 126, 197, 200 f.
Wis-konstige Musyka, 177.

wolf, xii, 10 f, 27, 34, 92, 120, 133 £, 136, 165.




woodwind instruments, 7, 126, 200 f.

Yasser, J., 9, 115 f.
Young, R. W, 201.
Young, T., 12 f, 137, 163, 167 £, 180 f, 183 f.

Zacconi, L., 46.

Zarlino, G., 6,9, 11, 25, 27,32, 35,37,42, 46, 50 f, 59, 115, 120, 123, 146, 149, 166, 196 f.
Zeisung, H., 144,

Zipoli, D., 193.

OceanofPDF.com


https://oceanofpdf.com/

Intervals with Superparticular Ratios

Ratios Intervals Cents Page References in Text
2:1 cclave 1200 passim
a:2 ; perfect Gth T02 passim
4:3 perfect d4th 488 passim
5:4 major Ird Jae passim
B:6 minor Zrd 316 passim
T:8 small minor 3rd 287 18, 18 (Table 13), 22f, 30 f.
8:7 maximurm tone 234 19 (Table 13), 20, 33 £, 154,
a:8 major tone 204 passim
10:8 minor tone 182 _passim
11:10 minlmum tone 165 21 [, 156.
12:11 semitone (3/4 tone) 150 18, 21, 154-15€.
13:12 by 139 23, 156.
14:13 » 128 2.
approximation to
15:14 meantone diatonic 119 17 (Table 5), 19, 23

samitona 30 £, 154-158.



18:18 just diatonle 112 passim

sSemitone

17:1¢ se m | Loone 105 57, 143, 155 1.
approximation to

18:17 semitons of equal a9 8, 57-84, 143, 1551, 188.

temperament

19:18 semitone 93 17 (Table 1), 18, 57, 143, 156
approximation to 16 (Table 2), 17 (Table T),

20:19 Pythagorean 89 18, 19 (Tables 13 and 14),
diatonic semitone 143, 156.

21: 20 asmitone R4 20, 22, 155 f.

22:21 ' 81 18, 23, 153, 165.
approximation to

24: 23 meantone chromatic 4 16, 30 1.

semitone

26: 2 = 70 passim

26:25 third tone 68 a.

27:28 ES 65 156.

28: 27 = " 63 1€, 18, 20, 22, 154.

31:30 quarter tone 57 71, 23, 111.

32:31 ’ o 55 21, 23, 111.

333 ) s 53 154, 155.

308: 3% = = 49 16, 23.

80:38 " " 45 16 (Takle 3).

40:39 s " 44 16 (Table 2), 23, 156.

45:44 " " 30 158.

46:45 . . 38 18, 33.

48:40 " L 36 24, 154

58:54 comma 32 154 .

56: 55 " 3l 23.

64 63 . 2 23, 154.



approximation

T4:73 to ditonic 24
comimma
. syntonic
B1:80 hi 22
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