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PREFACE

This book is based upon my unpublished Cornell dissertation, Equal

Temperament: Its History from Ramis (1482) to Rameau (1737), Ithaca,

1932. As the title indicates, the emphasis in the dissertation was upon

individual writers. In the present work the emphasis is on the theories rather

than on their promulgators. Since a great many tuning systems are

discussed, a separate chapter is devoted to each of the principal varieties of

tuning, with subsidiary divisions wherever necessary. Even so, the whole

subject is so complex that it seemed best that these chapters be preceded by

a running account (with a minimum of mathematics) of the entire history of

tuning and temperament. Chapter I also contains the principal account of

the Pythagorean timing, for it is unnecessary to spend a chapter upon a

tuning system that exists in one form only.

Most technical terms will be defined when they first occur, as well as in

the Glossary, but a few of these terms should be defined immediately. Of

small intervals arising from tuning, the comma is the most familiar. The

ordinary (syntonic or Ptolemaic) comma is the interval between a just major

third, with ratio 5:4, and a Pythagorean ditone or major third, with ratio

81:64. The ratio of the comma (the ratio of an interval is obtained by

dividing the ratio of the higher pitch by that of the lower) is 81:80.

The Pythagorean (ditonic) comma is the interval between six tones, with

ratio 531441:262144, and the pure octave, with ratio 2:1. Thus its ratio is

531441:524288, which is approximately 74:73. The ditonic comma is about

12/11 as large as the syntonic comma. In general, when the word comma is

used without qualification, the syntonic comma is meant.

There is necessarily some elasticity in the manner in which the different

tuning systems are presented in the following chapters. Sometimes a writer

has described the construction of a monochord, a note at a time. That can be

set down easily in the form of ratios. More often he has expressed his

monochord as a series of string-lengths, with a convenient length for the

fundamental. (Except in the immediate past, the use of vibration numbers,

inversely proportional to the string-lengths, has been so rare that it can be



ignored.) Or he may speak of there being so many pure fifths, and other

fifths flattened by a fractional part of the comma. Such systems could be

transformed into equivalent string-lengths, but this has not been done in this

book when the original writer had not done so.

Systems with intervals altered by parts of a comma can be shown

without difficulty in terms of Ellis’ logarithmic unit called the cent, the

hundredth part of an equally tempered semitone, or 1/1200 part of an

octave.* Since the ratio of the octave is 2:1, the cent is 2
1/1200

. As a matter

of fact, such eighteenth century writers on temperament as Neidhardt and

Marpurg had a tuning unit very similar to the cent: the twelfth part of the

ditonic comma, which they used, is 2 cents, thus making the octave contain

600 parts instead of 1200.

The systems originally expressed in string-lengths or ratios may be

translated into cents also, although with greater difficulty. They have been

so expressed in the tables of this book, in the belief that the cents

representation is the most convenient way of affording comparisons

between systems. In systems where it was thought they would help to

clarify the picture, exponents have been attached to the names of the notes.

With this method, devised by Eitz, all notes joined by pure fifths have the

same exponent. Since the fundamental has a zero exponent, all the notes of

the Pythagorean tuning have zero exponents. The exponent -1 is attached to

notes a comma lower than those with zero exponents, i.e., to those forming

pure thirds above those in the zero series. Thus in just intonation the notes

forming a major third would be C
0
-E

_1
, etc. Similarly, notes that are pure

thirds lower than notes already in the system have exponents which are

greater by one than those of the higher notes. This use of exponents is

especially advantageous in comparing various systems of just intonation

(see Chapter V). It may be used also, with fractional exponents, for the

different varieties of the meantone temperament. If the fifth C-G, for

example, is tempered by 1/4 comma, these notes would be labeled C
0
 and

G
-1/4

.

A device related to the use of integral exponents for the notes in just

intonation is the arrangement of such notes to show their harmonic

relationships. Here, all notes that are related by fifths, i.e., that have the

same exponent, lie on the same horizontal line, while their pure major thirds

lie in a parallel line above them, each forming a 45° angle with the related

note below. Since the pure minor thirds below the original notes are lower



by a fifth than the major thirds above them, they will lie in the same higher

line, but will form 135° angles with the original notes. For example:

This arrangement is especially good for showing extensions of just

intonation with more than twelve notes in the octave, and it is used for that

purpose only in this book (see Chapter VI).

It is desirable to have some method of evaluating the various tuning

systems. Since equal temperament is the ideal system of twelve notes if

modulations are to be made freely to every key, the semitone of equal

temperament, 100 cents, is taken as the ideal, from which the deviation of

each semitone, as C-C
#
, C

#
-D, D-E

b
, etc., is calculated in cents. These

deviations are then added and the sum divided by twelve to find the mean

deviation (M.D.) in cents. The standard deviation (S.D.) is found in the

usual manner, by taking the root-mean-square.

It should be added that there may be criteria for excellence in a tuning

system other than its closeness to equal temperament. For example, if no

notes beyond E
b
 or G

#
 are used in the music to be performed and if the

greatest consonance is desired for the notes that are used, then probably the

1/5 comma variety of mean - tone temperament would be the ideal, since its

fifths and thirds are altered equally, the fifths being 1/5 comma flat and its

thirds 1/5 comma sharp. If keys beyond two flats or three sharps are to be

touched upon occasionally, but if it is considered desirable to have the

greatest consonance in the key of C and the least in the key of G
b
, then our

Temperament by Regularly Varied Fifths would be the best. This is a matter

that is discussed in detail at the end of Chapter VII, but it should be

mentioned now.

My interest in temperament dates from the time in Berlin when

Professor Curt Sachs showed me his copy of Mersenne’s Harmonie

universelle. I am indebted to Professor Otto Kinkeldey, my major professor

at Cornell, and to the Misses Barbara Duncan and Elizabeth Schmitter of

the Sibley Musical Library of the Eastman School of Music, for assistance

rendered during my work on the dissertation. Most of my more recent

research has been at the Library of Congress. Dr. Harold Spivacke and Mr.

Edward N. Waters of the Music Division there deserve especial thanks for



encouraging me to write this book. I want also to thank the following men

for performing so well the task of reading the manuscript: Professor Charles

Warren Fox, Eastman School of Music; Professor Bonnie M. Stewart,

Michigan State College; Dr. Arnold Small, San Diego Navy Electronics

Laboratory; and Professor Glen Haydon, University of North Carolina.

J. Murray Barbour

November, 1950

PREFACE TO SECOND EDITION

It is gratifying that the sales of this book have warranted a second

edition. In it several minor errors have been rectified. But thé major

changes are in the Index. There the serious errors in pagination have been

corrected, and, following a suggestion made by Professor David D. Boyden,

University of California, most of the cross references have been replaced by

direct page references. These changes should increase the value of Tuning

and Temperament as a reference work.

J. M. B.

East Lansing, Michigan

September, 1952
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GLOSSARY

Arithmetical Division — The equal division of the difference between two

quantities, so that the resultant forms an arithmetical progression, as

9:8:7:6.

Bonded Clavichord — A clavichord upon which two or more consecutive

semitones were produced upon a single string.

Cent — The unit of interval, measure. The hundredth part of an equal

semitone, with ratio
1200

Circle of Fifths — The arrangement of the notes of a closed system by

fifths, as C, G, D, A, E, etc.

Circulating Temperaments — Temperaments in which all keys are playable,

but in which keys with few sharps or flats are favored.

Closed System — A regular temperament in which the initial note is

eventually reached again.

Column of Differences — See Tabular Differences.

Comma — A tuning error, such as the interval B
#
-C in the Pythagorean

tuning. See Ditonic Comma and Syntonic Comma.

Diesis — The interval (roughly 1/5 tone) between two enharmonically

equivalent notes, as Ab and G#, in just intonation or meantone

temperament. Its ratio is 128:125 or about 41 cents.

Ditone — A major third, especially one formed by two equal tones, as in

the Pythagorean tuning (81:64).

Ditonic Comma — The interval between two enharmonically equivalent

notes, as B
#
 and C, in the Pythagorean tuning. Its ratio is 531441:524288

or approximately 74:73, and it is conventionally taken as 24 cents.



Duplication of the Cube — A problem of antiquity, equivalent to finding

two geometrical means between two quantities one of which is twice as

large as the other, or to finding the cube root of 2.

Exponents — In tuning theory integral and fractional exponents are used to

indicate deviations from the Pythagorean tuning, the unit being the

syntonic comma.

Equal Temperament — The division of the octave into an equal number of

parts, specifically into 12 semitones, each of which has the ratio of 
12

Euclidean Construction — Euclid’s method for finding a mean proportional

between two lines, by describing a semicircle upon the sum of the lines

taken as a diameter and then erecting a perpendicular at the juncture of

the two lines.

Fretted Clavichord — See Bonded Clavichord.

Fretted Instruments — Such modern instruments as the guitar and banjo, or

the earlier lute and viol.

Generalized Keyboard — A keyboard arranged conveniently for the

performance of multiple divisions.

Geometrical Division — The proportional division of two quantities, so that

the resultant forms a geometrical progression, as 27:18:12:8.

Golden System — A system of tuning based on the ratio of the golden

section .

Good Temperaments — See Circulating Temperaments.

Irregular System — Any tuning system with more than one oddsized fifth,

with the exception of just intonation.

Just —Pure: A term applied to intervals, as the just major third.

Just Intonation — A system of tuning based on the octave (2:1), the pure

fifth (3:2), and the pure major third (5:4).

Linear Correction — The arithmetical division of the error in a string-

length.



Mean-Semitone Temperament — A temperament in which the diatonic

notes are in meantone temperament, and the chromatic notes are taken as

halves of meantones.

Meantone Temperament — Strictly, a system of tuning with flattened fifths 

 and pure major thirds (5:4). See Varieties of Meantone

Temperament.

Meride — Sauveur’s tuning unit, 1/43 octave, that is,  Each meride

was divisible into 7 eptamerides, and each of the eptamerides into 10

decamerides.

Mesolabium — An instrument of the ancients for finding mechanically 2

mean proportionals between 2 given lines. See illustration, p. 51.

Monochord — A string stretched over a wooden base upon which are

indicated the string-lengths for some tuning system; a diagram containing

these lengths; directions for constructing such a diagram.

Monopipe — A variable open pipe, with indicated lengths for a scale in a

particular tuning system, thus fulfilling a function similar to that of a

monochord.

Multiple Division — The division of the octave into more than 12 parts,

equal or unequal.

Negative System — A regular system whose fifth has a ratio smaller than

3:2.

Positive System — A regular system whose fifth has a ratio larger than 3:2.

Ptolemaic Comma — See Syntonic Comma.

Pythagorean Comma — See Ditonic Comma.

Pythagorean Tuning — A system of tuning based on the octave (2:1) and

the pure fifth (3:2).

Regular Temperament — A temperament in which all the fifths save one

are of the same size, such as the Pythagorean tuning or the meantone

temperament. (Equal temperament, with all fifths equal, is also a regular

temperament, and so are the closed systems of multiple division.)



Schisma — The difference between the syntonic and ditonic commas, with

ratio 32805:32768, or approximately 2 cents.

Semi-Meantone Temperament — See Mean-Semitone Temperament.

Sesqui- — The prefix used to designate a superparticular ratio, as

sesquitertia (4:3).

Sexagesimal Notation — The use of 60 rather than 10 as a base of

numeration, as in the measurement of angles.

Split Keys — Separate keys on a keyboard instrument for such a pair of

notes as G
#
 and A

b
.

String-Length — The portion of a string on the monochord that will

produce a desired pitch.

Subsemitonia — See Split Keys.

Superparticular Ratio — A ratio in which the antecedent exceeds the

consequent by 1, as 5:4. See Sesqui-.

Syntonic Comma — The interval between a just major third (5:4) and a

Pythagorean third (81:64). Its ratio is 81:80 and it is conventionally taken

as 22 cents.

Tabular Differences — The differences between the successive terms in a

sequence of numbers, such as a geometrical progression.

Temper - To vary the pitch slightly. A tempered fifth is specifically a

flattened fifth.

Temperament — A system, some or all of whose intervals cannot be

expressed in rational numbers.

A Tuning — A system all of whose intervals can be expressed in rational

numbers.

Tuning Pipe — See Monopipe.

Unequal Temperament — Any temperament other than equal temperament,

particularly the meantone temperament or some variety thereof.

Varieties of Meantone Temperament — Regular temperaments formed on

the same principle as the meantone temperament, with flattened fifths



and (usually) sharp thirds.

Wolf Fifth — The dissonant fifth, usually G
#
-E

b
 (notated as a diminished

sixth), in any unequal temperament, such as the meantone wolf fifth of

737 cents.
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Chapter I. HISTORY OF TUNING AND

TEMPERAMENT

The tuning of musical instruments is as ancient as the musical scale. In fact,

it is much older than the scale as we ordinarily understand it. If primitive

man played upon an equally primitive instrument only two different pitches,

these would represent an interval of some sort – a major, minor, or neutral

third; some variety of fourth or fifth; a pure or impure octave. Perhaps his

concern was not with interval as such, but with the spacing of soundholes

on a flute or oboe, the varied lengths of the strings on a lyre or harp.

Sufficient studies have been made of extant specimens of the wind

instruments of the ancients, and of all types of instruments used by

primitive peoples of today, for scholars to come forward with interesting

hypotheses regarding scale systems anterior to our own. So far there has

been no general agreement as to whether primitive man arrived at an

instrumental scale by following one or another principle, several principles

simultaneously, or no principle at all. Since this is the case, there is little to

be gained by starting our study prior to the time of Pythagoras, whose

system of tuning has had so profound an influence upon both the ancient

and the modern world.

The Pythagorean system is based upon the octave and the fifth, the first

two intervals of the harmonic series. Using the ratios of 2:1 for the octave

and 3:2 for the fifth, it is possible to tune all the notes of the diatonic scale

in a succession of fifths and octaves, or, for that matter, all the notes of the

chromatic scale. Thus a simple, but rigid, mathematical principle underlies

the Pythagorean tuning. As we shall see in the more detailed account of

Greek tunings, the Pythagorean tuning per se was used only for the diatonic

genus, and was modified in the chromatic and enharmonic genera. In this

tuning the major thirds are a ditonic comma (about 1/9 tone) sharper than

the pure thirds of the harmonic series. When the Pythagorean tuning is

extended to more than twelve notes in the octave, a sharped note, as G
#
, is

higher than the synonymous flatted note, as A
b
.



The next great figure in tuning history was Aristoxenus, whose dispute

with the disciples of Pythagoras raised a question that is eternally new: are

the cogitations of theorists as important as the observations of musicians

themselves? His specific contention was that the judgment of the ear with

regard to intervals was superior to mathematical ratios. And so we find him

talking about “parts” of an octave rather than about string-lengths. One of

Aristoxenus’ scales was composed of equal tones and equal halves of tones.

Therefore Aristoxenus was hailed by sixteenth century theorists as the

inventor of equal temperament. However, he may have intended this for the

Pythagorean tuning, for most of the other scales he has expressed in this

unusual way correspond closely to the tunings of his contemporaries. From

this we gather that his protest was not against current practice, but rather

against the rigidity of the mathematical theories.

Claudius Ptolemy, the geographer, is the third great figure in early

tuning history. To him we are in debt for an excellent principle in tuning

lore: that tuning is best for which ear and ratio are in agreement. He has

made the assumption here that it is possible to reach an agreement. The

many bitter arguments between the mathematicians and the plain musicians,

even to our own day, are evidence that this agreement is not easily obtained,

but may actually be the result of compromise on both sides. To Ptolemy the

matter was much simpler. For him a tuning was correct if it used

superparticular ratios, such as 5:4, 11:10, etc. All of the tuning varieties

which he advocated himself are constructed exclusively with such ratios. To

us, nearly 2000 years later, his tunings seem as arbitrary as was that of

Pythagoras.

Ptolemy’s syntonic diatonic has especial importance to the modern

world because it coincides with just intonation, a tuning system founded on

the first five intervals of the harmonic series – octave, fifth, fourth, major

third, minor third. Didymus’ diatonic used the same intervals, but in slightly

different order. If it could be shown that Ptolemy favored his syntonic

tuning above any of the others which he has presented, the adherents of just

intonation from the sixteenth century to the twentieth century would be on

more solid ground in hailing him as their patron saint. Actually he approved

the syntonic tuning because its ratios are superparticular; but so are the

ratios of three of the four other diatonic scales he has given.

Just intonation, in either the Ptolemy or the Didymus version, was

unknown throughout the Middle Ages. Boethius discussed all three of the



above-mentioned authorities on tuning, but gave in mathematical detail

only the system of Pythagoras. It was satisfactory for the unisonal

Gregorian chant, for its small semitones are excellent for melody and its

sharp major thirds are no drawback. Even when the first crude attempt at

harmony resulted in the parallel fourths and fifths of organum, the

Pythagorean tuning easily held its own.

But, later, thirds and sixths were freely used and were considered

imperfect consonances rather than dissonances. It has been questioned

whether these thirds and sixths were as rough as they would have been in

the strict Pythagorean tuning, or whether a process of softening (tempering)

had not already begun. At least one man, the Englishman Walter Odington,

had stated that consonant thirds had ratios of 5:4 and 6:5, and that singers

intuitively used these ratios instead of those given by the Pythagorean

monochord. In reply one might note that some theorists continued to

advocate the Pythagorean tuning for centuries after the common practice

had become something quite different. If it was good enough for them,

surrounded as they were by other, less harsh, tuning methods, it must have

sufficed for most of those who lived in an age when no other definite

system of tuning was known.

The later history of the Pythagorean tuning makes interesting reading.
1

It was still strongly advocated in the early sixteenth century by such men as

Gafurius and Ornithoparchus, and formed the basis for the excellent

modification made by Grammateus and Bermudo. At the end of the century

Papius spoke in its favor, and so, forty years later, did Robert Fludd. In the

second half of the seventeenth century Bishop Caramuel, who has the

invention of “musical logarithms” to his credit, said that “very many”

(plurimi) of his contemporaries still followed in the footsteps of Pythagoras.

Like testimony was given half a century later from England, where

Malcolm wrote that “some and even the Generality ... tune not only their

Octaves, but also their 5ths as perfectly... Concordant as their Ear can judge,

and consequently make their 4ths perfect, which indeed makes a great many

Errors in the other Intervals of 3rd and 6th.” After another half century we

find Abbé Roussier extolling “triple progression,” as he called the

Pythagorean tuning, and praising the Chinese for continuing to tune by

perfect fifths.

Like the systems of Agricola in the sixteenth century and of Dowland in

the early seventeenth century, many of the numerous irregular systems of



the eighteenth century contained more pure than impure fifths. The

instruments of the violin family, tuned by fifths, have a strong tendency

toward the Pythagorean tuning. And a succession of roots moving by fifths

is the basis of our classic system of harmony from Rameau to Prout and

Goetschius. Truly the Pythagorean tuning system has been long-lived, and

is still hale and hearty!

To return to the fifteenth century and the dissatisfied performers:

Almost certainly some men did dislike the too-sharp major thirds and the

too-flat minor thirds so much that they attempted to improve them. But

history has preserved no record of their experiments. And the vast majority

must have still been using the Pythagorean system, with all its

imperfections, when Ramis de Pareja presented his tuning system to the

world.

To be sure, Ramis did not present himself as the champion of a

tremendous innovation. He was not a Luther nailing his ninety-five theses

to the church door. His tuning was offered as a method which would be

easier to work out on the monochord, and thus would be of greater

utilitarian value to the singer, than was the Pythagorean tuning, with its

cumbersome ratios. Although Ramis’ monochord contained four pure

thirds, with ratio 5:4, it was not the usual form of just intonation applied to

the chromatic octave, in which eight thirds will be pure. It is rather to be

considered an irregular tuning, combining features of both the Pythagorean

tuning and just intonation. Some of Ramis’ contemporaries assailed his

tuning method, but his pupil Spataro explained it as a sort of temperament

of the Pythagorean tuning. From these polemics arose the entirely false

notion that Ramis was an advocate of equal temperament.
2
 But he is worthy

of our respect as the first of a long line of innovators and reformers in the

field of tuning.

As the words “tuning” and “temperament” are used today, the former is

applied to such systems as the Pythagorean and just, in which all intervals

may be expressed as the ratio of two integers. Thus for any tuning it is

possible to obtain a monochord in which every string-length is an integer. A

temperament is a modification of a tuning, and needs radical numbers to

express the ratios of some or all of its intervals. Therefore, in monochords

for temperaments the numbers given for certain (or all) string-lengths are

only approximations, carried out to a particular degree of accuracy. Actually

it is difficult in extreme cases to distinguish between tunings and



temperaments. For example, Bermudo constructed a monochord in which

the tritone G-C
#
 has the ratio 164025:115921. This differs by only 1/7 per

cent from the tritone of equal temperament, and in practice could not have

been differentiated from it. But his system, which consists solely of linear

divisions, should be called a tuning rather than a temperament.

It is not definitely known when the practice of temperament first arose

in connection with instruments of fixed pitch, such as organs and claviers.

Even in tuning an organ by Pythagorean fifths and octaves, the result would

not be wholly accurate if the timer’s method was to obtain unisons between

pitches on a monochord and the organ pipes. This would be a sort of

unconscious temperament. More consciously he may have tried to improve

some of the harsh Pythagorean thirds by lopping a bit off one note or

another. Undoubtedly this was being done during the fifteenth century, for

we find Gafurius, at the end of that century, mentioning that organists assert

that fifths undergo a small diminution called temperament (participata).
3

We have no way of knowing what temperament was like in Gafurius’

age; but it is my belief that this diminution which Gafurius characterized as

“minimae ac latentis incertaeque quodemmodo quantitatis” was actually so

small that organs so tuned came closer to being in equal temperament than

in just intonation or the mean-tone temperament. This belief is substantiated

by two German methods of organ temperament which appeared in print a

score of years later than Gafurius’ tome. The earlier of the two was Arnold

Schlick’s temperament, an irregular method for which his directions were

somewhat vague, but in which there were ten flattened and two raised

fifths, as well as twelve raised thirds. Shohé Tanaka’s description of

Schlick’s method
4
 as the mean-tone temperament is wholly false; for in the

latter the eight usable thirds are pure. Actually, from Schlick’s own account,

the method lay somewhere between the mean-tone temperament and the

equal temperament. More definite and certainly very near to equal

temperament was Grammateus’ method, in which the white keys were in

the Pythagorean tuning and the black keys were precisely halfway between

the pairs of adjoining white keys.

Just what the players themselves at this time understood by equal

semitones is not known. Perhaps they would have been satisfied with a

tuning like that of Grammateus, with ten semitones equal and the other two

smaller. The first precise mathematical definition of equal temperament was

given by Salinas: “We judge this one thing must be observed by makers of



viols, so that the placing of the frets may be made regular, namely that the

octave must be divided into twelve parts equally proportional, which twelve

will be the equal semitones.”
5
 To facilitate constructing this temperament

on the monochord, Salinas advised the use of the mesolabium, a mechanical

method for finding two mean proportionals between two given lines.

Zarlino also gave mechanical and geometric methods for finding the mean

proportionals, intended primarily for the lute. (Zarlino did include, however,

Ruscelli’s enthusiastic plea that all instruments, even organs, should be

tuned equally.) The history of equal temperament, then, is chiefly the

history of its adoption upon keyboard instruments.

Neither Salinas nor Zarlino gave monochord lengths for equal

temperament, although the problem was not extremely difficult: to obtain

the 12th root of 2, take the square root twice and then the cube root. The

first known appearance in print of the correct figures for equal temperament

was in China, where Prince Tsaiyü’s brilliant solution remains an enigma,

since the music of China had no need for any sort of temperament. More

significant for European music, but buried in manuscript for nearly three

centuries, was Stevin’s solution. As important as this achievement was his

contention that equal temperament was the only logical system for tuning

instruments, including keyboard instruments. His contemporaries

apologetically presented the equal system as a practical necessity, but

Stevin held that its ratios, irrational though they may be, were “true” and

that the simple, rational values such as 3:2 for the fifth were the

approximations! In his day only a mathematician (and perhaps only a

mathematician not fully cognizant of contemporary musical practice) could

have made such a statement. It is refreshingly modern, agreeing completely

with the views of Schönberg and other advanced theorists and composers of

our day.

The most complete and important discussion of tuning and temperament

occurs in the works of Mersenne. There, in addition to his valuable

contributions to acoustics and his descriptions of instruments, Mersenne ran

the whole gamut of tuning theory. He expressed equal temperament in

numbers, indicated geometrical and mechanical solutions for it, and finally

put it upon the practical basis of tuning by beats as used today. Fully as

catholic is his list of instrumental groups for which this temperament should

be used: all fretted instruments, all wind instruments, all keyboard

instruments, and even percussion instruments (bells).
6
 The widespread



influence of Mersenne’s greatest work, Harmonie universelle (Paris, 1636 –

37), undoubtedly helped greatly to popularize a timing that was then still

considered as suitable for lutes and viols only.

The first really practical approximation for equal temperament had been

presented by Vincenzo Galilei half a century before Mersenne. He showed

that the ratio of 18:17 was convenient in fretting the lute. Since references

to this size of semitone cover two and a half centuries, it is probable that it

has been used even longer by makers of lutes, guitars, and the like. Of

course the repeated use of the 18:17 ratio would not give an absolutely pure

octave, but a slight adjustment in the intervals would correct the error.

Galilei’s explanation of the reason for equal semitones on the lute is logical

and correct: Since the frets are placed straight across the six strings, the

order of diatonic and chromatic semitones is the same on all strings. Hence,

in playing chords, C
#
 might be sounded on one string and D

b
 on another,

and this will be a very false octave unless the instrument is in equal

temperament.

Vicentino had referred to a serious difficulty that arose from the

common practice of having one kind of tuning (mean-tone) for keyboard

instruments and another (equal) for fretted instruments. Since the pitches

were so divergent, there was dissonance whenever the two groups were

used together. By 1600, theorists like Artusi and Bottrigari said that these

different groups of instruments were not used simultaneously because of the

pitch difficulties. That is why such large instrumental groups were needed

as those employed in the Ballet Comique de la Reine or in Monteverdi’s

Orfeo – selected groups of like instruments sounded well, but the mixture of

different tunings made tuttis impracticable. It would seem that this

consideration would have brought about the universal adoption of equal

temperament long before it did come. However, after the unfretted violins

became the backbone of the seventeenth century orchestra, their flexibility

of intonation made this problem less pressing than when lutes and viols had

been opposed to organs and claviers.

Before we leave the sixteenth century, we should examine the

contribution to tuning history for which Vicentino is especially known. His

archicembalo was an instrument with six keyboards, with a total of thirty-

one different pitches in the octave. He described its tuning as that of the

“usage and tuning common to all the keyboard instruments, as organs,

cembali, clavichords, and the like.”
7
 This would have been the ordinary



mean-tone temperament, in which the fifths were tempered by 1/4 comma.

Huyghens, a century and a half after Vicentino, showed that there was very

close correspondence between a system in which the octave is divided into

thirty-one logarithmically equal parts and the mean-tone system, similarly

extended to thirty-one parts.

A simpler type of multiple division was the cembalo with nineteen notes

in the octave. Both Zarlino and Salinas intended their variants of the mean-

tone temperament (with fifths tempered by 2/7 and by 1/3 comma

respectively) for such an instrument, and the latter’s temperament would

result in an almost precisely equal division. Praetorius described such an

instrument also, and it has received favor with some twentieth century

writers, especially Yasser.

The best system of multiple division within the limits of practicability

divides the octave into fifty-three parts. This is literally a scale of commas,

and, as such, was suggested by the ancient Greek writers on the

Pythagorean system. Mersenne and Kircher in the seventeenth century

mentioned the system. Mercator realized its advantages for measuring

intervals. But especial honor should be paid to the nineteenth century

Englishman Bosanquet for devising an harmonium with a “generalized

keyboard” upon which the 53-system could be performed.

Other varieties of equal multiple division will be discussed in Chapter

VI, together with a number of unequal divisions, most of which are

extensions of just intonation. Practical musicians have rejected all of them,

chiefly because they are more difficult to play, as well as being more

expensive, than our ordinary keyboards.

Just intonation, as has already been mentioned, has had few devotees

since the early seventeenth century. The history of the mean-tone

temperament makes more interesting reading, since various theorists in

addition to Zarlino and Salinas had conflicting ideas as to the amount by

which the fifths should be tempered. Silbermann’s temperament of 1/6

comma for the fifths is the most significant for us, because he represents the

more conservative practice during the time of Bach and Handel. In his

temperament the thirds are slightly sharp, but the wolves are almost as

ravenous as in the Aron 1/4 comma system.

To some extent the final adoption of equal temperament for an

individual organ or clavier might have meant substituting this temperament

for some type of mean-tone temperament. We are told that organs in



England were still generally in mean-tone temperament until the middle of

the nineteenth century. England must have lagged behind the Continent in

this respect, and it is quite possible that the change, when it did come, was

radical.

But it is more likely that in most cases the change to equal temperament

was made more smoothly than this. The importance of unequal systems of

twelve notes to the octave has been generally neglected by the casual

historians of tuning, to whom only the Big Four (Pythagorean, just, mean-

tone, and equal) are of moment. It is my opinion, however, that the unequal

systems were of the greatest possible significance in bringing about the

supremacy of our present tuning system. Reference has already been made

to the early sixteenth century irregular systems of Schlick and Grammateus.

The former resembled the mean-tone temperament; the latter was derived

from the Pythagorean tuning. Bermudo repeated Grammateus’ tuning, and

his own second method was basically Pythagorean also. Ramis and

Agricola crossed just intonation with the Pythagorean tuning, with fairly

happy issue. Ganassi and Artusi treated just intonation and the mean-tone

temperament much as Grammateus and Bermudo had treated the

Pythagorean tuning.

Only a few years later than Grammateus, Aron described for organs the

mean-tone temperament, mentioned above. In it every fifth save one was

tempered by such an amount (1/4 comma, or about 1/18 semitone) that four

fifths less two octaves would produce a pure major third. Thus arose the

system that, with various modifications, was to be the strongest opponent of

equal temperament, so far as keyboard instruments were concerned, for two

or three hundred years. In the mean-tone temperament a sharped note, as

G
#
, is lower in pitch than the equivalent flattened note, as A

b
, by the great

diesis, which is almost half as large as a semitone.

After Aron’s time the mean-tone temperament, or some similar system,

was generally accepted for organ and clavier. But there were a few

dissenting voices. One was that of his exact contemporary Lanfranco,

whose practical tuning rules for keyboard instruments seem to agree with

no system other than equal temperament. Another was that of Fogliano,

who was apparently the first sixteenth century writer to follow Ramis’ lead

and use in a tuning system both the pure fifths and the pure thirds of just

intonation. But there is a difference; for he realized that the triads on D and

B
b
 would be hopelessly out of tune in such a system, and therefore



recommended that there be a mean D and B
b
, each differing by half a

comma from a pair of just pitches. These two mean pitches hint at Aron’s

mean-tone system. Otherwise this is what we ordinarily understand just

intonation to be. Ironically enough, Fogliano’s method, although containing

more perfect thirds than Ramis’ did, is far inferior to it if one goes beyond

the ordinary bounds of two flats and three sharps. Beyond these bounds lay

in wait the howling wolves, to muffle whose voices was the task of many a

later worker in this field.

Fogliano had no immediate followers as an advocate of just intonation,

since the following generation was more concerned with temperament. But

almost a century later, certain mathematicians – as Galileo, de Caus, and

Kepler – proclaimed again the validity of pure thirds and fifths. Occasional

lone figures, both mathematicians and music theorists, were to speak in

favor of just intonation, even until our own day. But it is significant that the

great music theorists, such as Zarlino, Mersenne, and Rameau, presented

just intonation as the theoretical basis of the scale, but temperament as a

practical necessity. Equally great mathematicians with some understanding

of music, from Stevin to Max Planck, have hailed temperament.

From the middle of the sixteenth century, all the theorists agreed that the

fretted instruments, lutes and viols, were tuned in equal temperament.

Vicentino made the first known reference to this fact, going so far as to state

that both types of instrument had been so tuned from their invention. If we

may believe pictorial evidence, especially that of the Flemish painters, so

meticulous about detail, frets were adjusted to equal temperament as early

as 1500, although there is not complete agreement on this point.

In the National Gallery in London, for example, there are several

paintings in which the position of frets is shown plainly. A Concert, by

Ercole de Roberti (1450–96), contains a nine-stringed lute and a small four-

stringed viol, both apparently in equal temperament. Marco Marziale’s

Madonna and Child Enthroned with Saints, painted between 1492 and

1507, has an eleven-stringed lute with intervals equally proportional. And

The Ambassadors, painted by Hans Holbein the Younger in 1533, has a six-

stringed lute, again in equal temperament. Negative evidence is furnished

by a painting by the early sixteenth century painter Ambrogio de Predis,

whose Angel Playing on a Musical Instrument is playing a nine-stringed

lute on which the semitones run large, small, small, large, and then three

equal, as if the notes might have been C, C
#
, D, E

b
, E, etc.



Because of the ease of tuning perfect fifths, the Pythagorean tuning has

been the foundation of many of the later irregular systems, including that of

Kirnberger. It also had some importance for such sophisticated writers as

Werckmeister, Neidhardt, and Marpurg, whose systems with subtly divided

commas were directed to the intellect rather than to the ear of the practical

musician.

It becomes apparent, however, from the works of the men just

mentioned that an instrument that was “well tempered” was not necessarily

tempered equally. The title of Bach’s famous “48” meant simply that the

clavier was playable in all keys. Werckmeister and Neidhardt explained

clearly that in their systems the key of C would be the best and D
b
 the

worst, with the consonance of the other keys somewhere between these

extremes.

Mersenne’s and Rameau’s modification of the 1/4 comma mean-tone

temperament resembles somewhat the “good” temperaments of

Werckmeister and Neidhardt, and Gallimard, with the aid of logarithms,

reached a very similar goal. Perhaps the best of these many irregular

systems was Thomas Young’s second method, in which six fifths are

perfect, and the other six are tuned flat by 1/6 Pythagorean comma, as in

Silbermann’s tuning. This would have been simpler to construct by ear than

most of the systems, and does have an orderly progression from good to

poor tuning as one departs from the most common keys.

In almost all of these irregular systems, from Grammateus to Young, all

the major thirds were sharp to some extent, thus differing from just

intonation and the mean-tone temperament, in which the usable thirds were

perfect and the others very harsh. For the practical musician it would have

been an easy matter, as time went on, to tune the “common” thirds still

sharper, so that all the thirds would be equally sharp, and his instrument

would be substantially in equal temperament. Probably this is exactly what

did happen.

The recorded opposition to equal temperament on the part of such men

as Werckmeister and even Sebastian Bach was to the rigorous mathematical

treatment implied by the name “gleich-schwebend.” Theirs was a practical

approximation to equality, and, from the keyboard compositions of Bach, it

is evident that his practice must have been as satisfactory as that of our

present-day tuners, else the great majority of his compositions would have

been unbearable.
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Chapter II. GREEK TUNINGS

Greek music theory is highly complex and difficult, with its alphabetical

notation, the dependence of musical rhythm upon poetic meter, and all the

rest of it. Our confusion is not lessened by the fact that scholars quarrel

about the exact interpretation of the modal scales and that a pitifully scant

remnant of the music itself is available for study today. Fortunately it is

possible to understand the essentials of Greek tuning theories without

entering into the other and more controversial aspects of Greek musical

science. Moreover, it is advisable that the Greek tuning lore be presented in

some detail in order that the attitude of many sixteenth and seventeenth

century theorists may be clarified.

The foundation of the Greek scale was the tetrachord, a descending

series of four notes in the compass of the modern perfect fourth. Most

typical was the Dorian tetrachord, with two tones and then a semitone, as A

G F E or E D C B. Two or more tetrachords could be combined by

conjunction, as the above tetrachords would be with E a common note. Or

they might be combined by disjunction, as the above tetrachords would be in

reverse order, with a whole tone between B and A. Tetrachords combined

alternately by conjunction and by disjunction correspond to our natural

heptatonic scale.

The Greeks had three genera–diatonic, chromatic, and enharmonic. A

diatonic tetrachord contained two tones and a semitone, variously arranged,

the Dorian tetrachord having the order shown above, as A G F E. In the

chromatic tetrachord the second string (as G) was lowered until the two

lower intervals in the tetrachord were equal. Thus A G
b
 F E represents the

process of formation better than the more commonly shown A F
#
 F E. In the

enharmonic tetrachord the second string was lowered still further until it was

in unison with the third string; the third string was then tuned half way

between the second and fourth strings. In notes the enharmonic tetrachord

would be A G
bb

  E or A F  E. Thus in the chromatic tetrachord there were

the consecutive semitones that we associate with the modern chromatic



genus; but the enharmonic tetrachord contained real quarter tones, whereas

our enharmonically equivalent notes, as F
b
 and E, differ by a comma, 1/9

tone, or at most by a diesis, 1/5 tone.

Claudius Ptolemy has presented the most complete list of tunings

advocated by various theorists, including himself.
1
 These (with one

exception to be discussed later) were shown by the ratios of the three

consecutive intervals that constituted the tetrachord, and also by string-

lengths for the octave lying between 120 and 60, using sexagesimal fractions

where necessary. The octave is the Dorian octave, as from E to E, with B–A

the disjunctive tone, always with 9:8 ratio. Ptolemy’s tables are given here

(Tables 1–21) with comments following. The fractions have been changed

into decimal notation.

Greek Enharmonic Tunings

Table 1. Archytas’ Enharmonic

Table 2. Aristoxenus’ Enharmonic



Table 3. Eratosthenes’ Enharmonic

Greek Chromatic Tunings

Table 4. Archytas’ Chromatic

Table 5. Aristoxenus’ Chromatic Malakon

Table 6. Aristoxenus’ Chromatic Hemiolion



Table 7. Aristoxenus’ Chromatic Tonikon

Table 8. Eratosthenes’ Chromatic

Table 9. Didymus’ Chromatic

Table 10. Ptolemy’s Chromatic Malakon

Table 11. Ptolemy’s Chromatic Syntonon



Greek Diatonic Tunings

Table 12. Archytas’ Diatonic

Table 13. Aristoxenus’ Diatonic Malakon

Table 14. Aristoxenus’ Diatonic Syntonon

Table 15. Eratosthenes’ Diatonic



Table 16. Didymus’ Diatonic

Table 17. Ptolemy’s Diatonic Malakon

Table 18. Ptolemy’s Diatonic Toniaion

Table 19. Ptolemy’s Diatonic Ditoniaion

Table 20. Ptolemy’s Diatonic Syntonon



Table 21. Ptolemy’s Diatonic Hemiolon

Only two of these seventeen or eighteen independent tunings have had

any great influence upon modern music theory–the third and fourth of

Ptolemy’s diatonic scales, commonly called the “ditonic” and the “syntonic.”

The former is the same as Eratosthenes’ diatonic, and is the old Pythagorean

tuning. It gains its name from the fact that its major third (ditone) consists of

a pair of equal tones. The latter, the “tightly stretched” in contrast to the

“soft” (malakon), is what we know as just intonation. Didymus’ diatonic

contains the same intervals as Ptolemy’s syntonic diatonic, but with the

minor tone (10:9) below the major tone (9:8) instead of the reverse.

Didymus’ arrangement is the more logical for constructing a monochord;

Ptolemy’s in terms of the harmonic series.

The theorists of the sixteenth and seventeenth centuries, eager to bolster

their ideas with classical prototypes, pointed out that the just tuning was that

of Didymus and Ptolemy. But they ignored the other diatonic tunings of

Ptolemy. They liked to point out further that in three of the enharmonic

tunings the pure major third (5:4) appears, and in four of the chromatic

tunings the pure minor third (6:5). But only Didymus used enharmonic and

chromatic tunings that really resembled just intonation. His chromatic is

tuned precisely as E, C
#
, C, etc., would be in just intonation, using the

chromatic semitone, 25:24, which appears in no other tuning. In his

enharmonic, not only does the major third have the ratio 5:4, but the small

intervals are “equal” quarter tones, resulting from an arithmetical division of

the 16:15 semitone.
2
 The other nine enharmonic and chromatic tunings

depart more or less from Didymus’ standard.

Let us examine more of the peculiarities of these Greek tunings.

Archytas has used the same ratio (28:27) for the lowest interval in each

genus, thus having an interval (63 cents) that is much smaller than most of

the semitones and larger than the quarter tones. The ditonic semitone,

256:243, is about the same size as Ptolemy’s “soft” semitone, 21:20, being a

comma smaller than the syntonic semitone, 16:15. The tones range from



minimum, 11:10, through minor, 10:9, and major, 9:8, to maximum, 8:7.

Archytas’ minor third, 32:27, is a comma larger than the syntonic third, 6:5,

and more than a comma smaller than Ptolemy’s minor third, 7:6.

Eratosthenes’ major third, 19:15, is about the same size as the Pythagorean

ditone, 81:64, and is about a ditonic comma larger than the syntonic third,

5:4.

Ever since his own age a great controversy has raged about the teachings

of Aristoxenus. Instead of using ratios, he divided the tetrachord into 30

parts, of which, in his diatonic syntonon, each tone has 12 parts, each

semitone 6. Thus, if we are to take him at his word, Aristoxenus was here

describing equal temperament. The sixteenth and seventeenth century

theorists were of the opinion that such was his intention, the advocates of

equal temperament opposing the name of Aristoxenus to that of Ptolemy.

Ptolemy himself did not so understand Aristoxenus’ doctrines. With a

fundamental of 120 units, the perfect fourth above has 90 units. Thus, as

shown in the tables, Ptolemy subtracted Aristoxenus’ “parts” from 120. His

enharmonic then agrees with that of Eratosthenes, and his chromatic tonikon

with the latter’s chromatic. But Aristoxenus’ diatonic syntonon does not then

quite agree with the Pythagorean (ditonic) diatonic, although the latter is the

only Greek tuning that contains two equal tones. His diatonic malakon, as

Ptolemy has shown it, is unlike any of the other timings; whereas in its

succession of intervals–large, medium, small – it resembles Ptolemy’s

diatonic malakon or chromatic syntonon.

So it seems quite likely that Aristoxenus did not intend to express any

new timings by his adding together of parts of a tone, but simply to indicate

in a general way the impression that current tunings made upon the ear. But

his vagueness has made possible all sorts of wild speculations. It is even

possible, by an improper manipulation of the figures, to argue that

Aristoxenus was a proponent of just intonation. Take his enharmonic: 24 + 3

+ 3. Add these numbers to 90 in reverse order as before, getting 90 93 96

120. Then consider these numbers to be frequencies rather than string-

lengths. The result is practically the same as Didymus’: 5/4 × 32/31 × 31/30.

Or take Aristoxenus’ diatonic syntonon: 12 + 12 + 6. Treat it as we have just

treated his enharmonic, getting 90 96 108 120. If these are then taken as

frequencies, we have Ptolemy’s syntonic, 10/9 × 9/8 × 16/15.

The paramount principle in Ptolemy’s tunings was the use of

superparticular proportion, a ratio in which the antecedent exceeds the



consequent by unity. (The Latin prefix “sesqui” is conveniently used to

describe these ratios, e.g., “sesquiquarta,” meaning 5/4.) Ptolemy used 5/4,

6/5, 7/6, 8/7, etc. Seven of the eight tunings that bear his own name are

constructed entirely of superparticular proportions, the eighth being the

ditonic, or Pythagorean. Seven tunings that he has ascribed to other writers

also use these ratios exclusively, including all of Didymus’ tunings,

Archytas’ enharmonic and diatonic, and Eratosthenes’ chromatic

(Aristoxenus’ chromatic tonikon). In just intonation the ratios are, of course,

super particular, and this feature only would have appealed to Ptolemy and

his contemporaries. For, despite the many apparently just intervals used in

the given tunings, Ptolemy recognized no consonances other than those of

the Pythagorean tuning–fourth, fifth, octave, eleventh, twelfth, and fifteenth.

It is easy to obtain, by algebra, all the possible divisions of the tetrachord

built up entirely by superparticular proportions. (A theory for the

superparticular division of tones is shown in connection with Colonna, in

Chapter VII.) Eliminating those in which one interval is considerably

smaller than the smallest enharmonic quarter tone (46:45), we find that,

collectively, the Greeks had not omitted many possibilities. Other

enharmonic tunings similar to Ptolemy’s would be 5/4 × 22/21 × 56/55 and

5/4 × 26/25 × 40/39. Chromatic tunings would include 6/5 × 13/12 × 40/39;

7/6 × 9/8 × 64/63; 7/6 × 10/9 × 36/35; and 7/6 × 15/14 × 16/15. Two others

are difficult to classify: 8/7 × 13/12 × 14/13 might best be considered a

chromatic tuning, something like 14 + 8 + 8 in Aristoxenus’ parts. And 8/7 ×

8/7 × 49/48 is undoubtedly a variant of the ditonic tuning, but with a quarter

tone instead of a semitone at the bottom, perhaps 14 + 14 + 2.

In later chapters we shall see many echoes of Greek tuning methods, not

only in such well-known systems as the Pythagorean and the just, but also in

the modified systems, such as Ganassi’s, and in irregular systems, such as

Dowland’s. Unusual superparticular intervals are used by Colonna in the

poorest timing system shown in this book, and also by Awraamoff, whose

system is even worse.

1
 Claudii Ptolemaei Harmonicorum libri tres. Latin translation by John
Wallis (London, 1699).

2
 Didymus’ enharmonic is not included in the above tables.
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Chapter III. MEANTONE TEMPERAMENT

It is not definitely known when temperament was first used. Vicentino stated

that the fretted instruments had always been in equal temperament. As for

the keyboard instruments, Zarlino declared that temperament was as old as

the complete chromatic keyboard. It may well be that some organs in the

fifteenth century had had temperament of a sort, although the Pythagorean

tuning continued to have too many advocates not to have been dominant in

the earlier period. However that may be, Riemann discovered the first

mention of temperament in a passage from Gafurius’ Practica musica

(1496).
1
 There, among the eight rules of counterpoint, Gafurius said that

organists assert that fifths undergo a small, indefinite amount of diminution

called temperament (participata). Since he was reporting a contemporary

fact, rather than advocating an innovation, the practice may have begun

decades earlier than his time.

Notice that Gafurius stated that there was nothing regular about the

temperament of his day, nor were the fifths diminished by any large amount.

It seems reasonable to believe that when organists first became dissatisfied

with the extremely sharp thirds of the Pythagorean tuning, they would go

about any alteration of the fifths in a gingerly manner, lopping off a bit here

and a bit there. Grammateus’ division of Pythagorean tones into equal

semitones came only twenty-two years after Gafurius’ observation,
2
 and

ranks very high among irregular systems that approach equal temperament.

It is easy to believe, therefore, that organs were tuned as well in 1500 as they

generally are today.

Dechales had no authority for stating that Guido of Arezzo was the father

of temperament
3
. The association of Ramis

4
 with
temperament is one of the

most common misconceptions in the history of tuning. And, although

Schlick’s system
5
 undoubtedly can properly be described as a temperament,

it is just as surely of an irregular variety. It is well to mention these names,

and discard each of them, before saying that full credit for describing the

meantone temperament must go to Pietro Aron.



In Aron’s Toscanello
6
 there is a chapter entitled “Concerning the

temperament (participation) and way of tuning the instrument.” The tuning

is to be made in three successive stages (see Table 22). First, the major third,

C–E, is to be made “sonorous and just.” But the fifth C–G is to be made “a

little flat.” The fifth G–D is to be similarly flattened, and then A is to be

tuned so that the fifths D–A and A–E are equal. The idea, of course, is to

ensure an equality of these four fifths, so far as it can be accomplished by

ear.

Table 22. Aron’s Meantone Temperament (1/4 Comma)

In the second stage of tuning, the fifths F–C, B
b
–F, and E

b
–B

b
 are

tempered exactly the same as the diatonic fifths had been. Finally, in the

third stage, C
#
 and F

#
 are tuned as pure thirds to A and D respectively. Aron

says nothing about G
#
. With Kinkeldey we can say that this note “probably

belongs to the third group,”
7
 and would be tuned as a pure third to E.

The name “meantone” was applied to this temperament because the tone,

as C-D, is precisely half of the pure third, as C–E. Aron said nothing about

the division of the comma. But since the pure E is a syntonic comma lower

than the Pythagorean E, and each fifth is to be tempered by the same

amount, the fifths will all be tempered by 1/4 comma. It is easy to calculate

the ratio of the meantone fifth: the major third has the ratio 5:4; hence the

ratio of the tone will be the square root of this, or . The ratio of the

major ninth will be twice the ratio of the tone, or . The ratio of the fifth

will be the square root of the ratio of the ninth, or . If we consider the

syntonic comma to be 21.5 cents, a fifth diminished by 1/4 comma will be

702.0 – 5.4 = 696.6 cents.

The deviation for the meantone temperament is nearly as large as for just

intonation. That would seem to indicate that temperament makes for little

improvement. Strangely enough, this is absolutely true, so far as the remote

keys are concerned. However, if the deviation were to be measured only



from E
b
 to G

#
, without allowing for the enharmonic uses of notes, the

meantone temperament would be an easy victor over just intonation. That is,

if we were computing the deviation of eleven fifths only, omitting the wolf

fifth of 737 cents, the standard deviation for the meantone temperament

would be much smaller than that for just intonation. But, since our ideal is

equal temperament, the deviation as computed shows accurately enough how

very unsatisfactory this tuning is when its narrow bounds are overstepped.

The meantone temperament was used from the beginning upon keyboard

instruments only. It was the temperament that Vicentino intended for his

Archicembalo when he said that it may be tuned “justly with the

temperament of the flattened fifth, according to the usage and tuning

common to all the keyboard instruments, as organs, cembali, clavichords,

and the like.”
8
 Zarlino called the meantone temperament a “new

temperament” and said that it is “very pleasing for all purposes” when used

on keyboard instruments.
9
 To divide the major third into two mean tones,

Zarlino advocated the Euclidean construction for a mean proportional, and

of course the fifth could be constructed from the major ninth by the same

means.

Verheijen’s reply to Stevin’s discussion of equal temperament explained

the meantone temperament in detail 
10

 He even included a monochord for it

(Table 23), and thus has the distinction of being the first person, so far as we

know, to put its ratios into figures (cents values as in Aron, Table 22,

beginning with F as 503).

Table 23. Verheijen’s Monochord for Mean-tone Temperament

In Spain, Sancta María described a practical tuning system that may have

been the same as the mean-tone tuning.
11

 He said that on the clavichord and

the vihuela (the Spanish lute) each fifth is to be “a little flat.” In fact, the

diminution is to be “so small that it can scarcely be noticed.” Since he did

not say whether the thirds were to be pure or a little sharp, we cannot know



whether his system was the real mean-tone or came nearer equal

temperament. However, he held that a tone cannot be divided into two equal

semitones, and consistently made the diatonic semitone larger than the

chromatic semitone, as it would be in just intonation or the Mean-tone

temperament.

The first German writer to describe the Mean-tone temperament was

more explicit. This was Michael Praetorius,
12

 in a chapter on the tuning of

the “Regal, Clavicymbel, Symphonien und dergleichen Instrument.” His was

a practical system, with major thirds and octaves pure, and fifths flat.

Praetorius explained carefully how various intervals are altered by fractional

parts of the comma.

Otto Gibelius
13

 showed a method for obtaining an approximately correct

monochord for the meantone temperament. First he made a table in which

were shown pairs of numbers differing by the syntonic comma for every

note in a 14-note octave, extending from A
b
 to D

#
. Then he made an

arithmetical division of each comma, with 3/4, 1/2, or 1/4 comma subtracted

from the larger number, to obtain the tempered value. C, E, G
#
, and A

b

needed no temperament (see Table 24). His results check closely with

numbers obtained by taking roots.
14

 For example, his D is 193200; it should

be 193196. His G is 144450 instead of 144447. Since the comma is small

relative to the intervals of the scale and since as much as a quarter or a half

of it is used, the error could not be great. An arithmetical division of the

ditonic comma into twelfths in the construction of equal temperament would

create greater errors than this for certain notes of the division.

Table 24. Gibelius’ Monochord for Mean-tone Temperament

Lemme Rossi,
15

 writing in the same year as Gibelius, would have

approved the latter’s approximation for the meantone temperament, for he

himself said that the arithmetical division of the comma differs “insensibly”

from a geometrical division. In the example that he gave, the geometrical



mean between the two numbers, 31104 and 30720, in the ratio of 81 to 80, is

30911, and the arithmetical mean is 30912, certainly a negligible difference.

But, he said, the correct string-lengths for the Mean-tone temperament can

be obtained both “easily and quickly with the table of logarithms.”

Our final monochord for the Mean-tone temperament proper will be

Rossi’s “Numeri del sistema participate.”
16

 He has given it for a 19-note

octave commencing on A (see Table 25). Since C itself is a tempered value

here, we have transposed the system up a minor third from A to C, selecting

those notes that would belong to the ordinary Mean-tone scale. The number

used for his fundamental had been previously used in a table of just

intonation.

Table 25. Rossi’s Monochord for Mean-tone Temperament

Another sort of approximation connected with the meantone

temperament was given by Claas Douwes.
17

 In describing the bonded

clavichord he gave simple ratios (most of them super-particular) for various

intervals that would occur on the same string. For example, the highest string

has C, B, B
b
, and A. C–A is 6:5; B–A, 19:17; B

b
–A, 15:14. On the next

string, G
#
–F is 7:6. Two octaves lower, the ninth string has only two notes,

G
#
 and G, with the ratio 24:23.

Douwes had explained that his was a tempered system. His rational

ratios are good approximations to the surds of the meantone temperament.

His minor third, with ratio 6:5, is 316 cents; the meantone minor third is 310.

His augmented second, 7:6, is 267 cents; the meantone augmented second is

270. His tone, 19:17, is almost 193 cents; the meantone tone is practically

the same. His diatonic semitone, 15:14, is 119 cents; the meantone diatonic

semitone, 117. His chromatic semitone, 24:23, is 74 cents; the meantone

chromatic semitone, 76. His system agrees with itself as well as with the

ordinary meantone system. For example, the tone should be the sum of the

diatonic and the chromatic semitones, or 15/14 × 24/23. This product is



3420:3059; his ratio for the tone, 19:17, equals 3420:3060, a close

correspondence.

In tracing the later history of the meantone temperament, it would be

easy to name theorists in all the principal European countries who continued

to favor an unequal tuning of keyboard instruments later than the first

quarter of the eighteenth century. But, unless, like Galin in 1818, they

specifically say that they favor the tuning in which the fifths are tempered by

1/4 syntonic comma or its equivalent (31-division),
18

 we have no right to

call their methods the meantone temperament. This is the fallacy of so much

that has been written on this subject.

Other Varieties of meantone Temperament

Strictly, there is only one meantone temperament. But theorists have

been inclined to lump together under that head all sorts of systems intended

for keyboard instruments. For example, the statement often appears in print

that in England the meantone temperament was used for organs until the

middle of the nineteenth century. William Crotch,
19

 writing early in that

century, wrote: “As organs are at present tuned, (with unequal temperament),

keys which have many flats or sharps will not have a good effect, especially

if the time be slow.” That statement is enough to cause a host of later English

writers to say that Crotch reported the meantone temperament to be in use in

his age.

But later in his book Crotch had this to say: “Unequal temperament is

that wherein some of the fifths, and consequently some of the thirds, are

made more perfect than on the equal temperament, which necessarily

renders others less perfect. Of this there are many systems, which the student

is now capable of examining for himself.”
20

 In other words, Crotch is saying

that there was a great diversity in the tuning of organs in his day.

In Chapter VII, “Irregular Systems,” twenty-odd men are mentioned who

collectively have described fifty of the “many systems,” none of which is the

meantone temperament. In the present chapter we propose to describe still

other systems of temperament, systems formed on the same general pattern

as meantone temperament. Bosanquet called “regular” a temperament

constructed with one size of fifth.
21

 The Pythagorean tuning, equal

temperament, meantone temperament—all are regular systems. The systems



that follow are also regular, with values for the fifth smaller than that of

equal temperament and (usually) larger than that of the meantone

temperament. Since their construction is similar, it is easy to describe them

as varieties of the meantone temperament. In all of them, the tone is

precisely half of the major third. No harm will be done by such a

nomenclature if we realize that these are regular temperaments which the

earlier theorists themselves considered of the same type as the 1/4-comma

temperament and some of which they preferred to it.

The first regular temperament to be advocated after the description of the

ordinary meantone temperament was that described by Zarlino in which

“each fifth remains diminished and imperfect by 2/7 comma.”
22

 Although

Zarlino showed a monochord with this tuning for the diatonic genus only, he

intended it also for the chromatic genus—by which he meant the ordinary

black keys. He also described an enharmonic genus, having 19 notes to the

octave, as applied to a cembalo which Master Domenico Pesarese had made

for him. This must have had the same tuning, although Zarlino did not

clearly say so. Most of these varieties of the meantone temperament will

have a smaller deviation when applied to a keyboard with 19 or more notes

to the octave than upon the usual keyboard. Zarlino’s temperament

corresponds to the 50-division, and, as such, will be discussed in the chapter

on multiple division.

In Table 26, we see the 2/7-comma temperament applied to a keyboard

with 12 notes to the octave. Since the amount of tempering is greater than

1/4 comma, the deviation is greater than for Aron’s system. It is, in fact, a

very poor system, and Zarlino later admitted it to be inferior to the 1/4-

comma system. The only just interval in it is the chromatic semitone. Tanaka

liked it “because all the imperfect consonances are impure alike,”
23

 that is,

the major and minor thirds are 1/7 comma flat (3 cents), and the major and

minor sixths are sharp by the same amount. To construct it on a monochord,

Zarlino would use the questionable virtues of the mesolabium.
24

Table 26. Zarlino’s 2/7 – Comma Temperament



The next variety of meantone temperament is also highly unsatisfactory

when applied to an octave of twelve semitones. This is the 1/3-comma

temperament, the invention of Francisco Salinas, which he described as

follows: “The first of them [the other two were the 2/7-comma and the 1/4-

comma temperaments] has the comma divided into three parts equally

proportional, of which the minor tone is increased by one part and the major

tone is decreased by two parts.”
25

 Salinas showed that his method results in

pure minor thirds, tritone, and major sixth. But the fifth is diminished by 1/3

comma, and so is the major third. On the whole this tuning does not compare

favorably with the others, but Salinas added: “Although this imperfection is

seen to be greater than that which is found in the other two temperaments,

nevertheless it is endurable.”

Salinas intended his temperament for an octave containing 19 notes,

divided into the three genera–diatonic, chromatic, and enharmonic. His

special reason for advocating this tuning was the ease of realizing it upon the

monochord. Seven of the notes can be obtained by a series of just minor

thirds below and above the fundamental. Thus we obtain C, D
#
, E

b
, F

#
, G

b
,

A, and B
#
, and Salinas has given their string-lengths for the octave 22500 to

11250.

To find the notes D and E, two mean proportionals must be inserted in

the tritone, C–F
#
. This “will be very easy to those who know the use of a

certain instrument invented by Archimedes, which is called mesolabium,

from finding mean lines by it.” The remainder of the notes can then be

obtained by minor thirds from D and E.

We agree with Salinas that the thirds and especially the fifths of the 1/3-

comma temperament are less pleasing than those of the other two. But, in

addition to its being capable of quicker tuning than the Zarlinian 2/7-comma

method, it has an advantage possessed by neither of the other methods: it is

practically a closed or cyclic system. Among its 19 notes there is no fifth

containing a wolf; nor are there any discordant thirds. It is an equal

temperament of 19 notes.

In recent times the 19-division has had eloquent advocates, to whom

reference is made in the chapter on multiple division. Let us see how well

the 1/3-comma system is adapted to a 12-note keyboard. As Table 27 shows,

this is the poorest tuning of all–like Zarlino’s method, it is worse than just

intonation. However, too many theorists who have described these two

systems have neglected to add that they are excellent for a 19-note octave.



Table 27. Salinas’ 1/3 – Comma Temperament

It would help us in portraying an orderly development of the 12-note

temperaments if we could show that little by little the temperament of the

fifth was reduced from the 1/4 comma of the meantone temperament to the

1/11 comma (1/12 ditonic comma equals 1/11 syntonic comma) of equal

temperament. Probably there was such a tendency. But it is only a fortunate

accident that Verheijen included the ratio of the fifth for the 1/5-comma

temperament, together with the ratios for the three temperaments discussed

by Zarlino and Salinas.
26

 Verheijen’s first ratio for the fifth is the cube root

of 10:3 (1/3-comma temperament); then the fourth root of 5:1 (1/4-comma);

the fifth root of 15:2 (1/5-comma); the seventh root of 50:3 (2/7-comma).

Verheijen’s casual reference to the 1/5-comma temperament indicates that

even then some people were using it. Rossi, a couple of generations later,

also referred briefly to the 1/5-comma temperament, including it as one of

the regular types then in use.
27

The temperament shown in Table 28 has in its favor, like the 1/3-comma

temperament, the equal distortion of the fifths and the major thirds, the

former being 1/5 comma flat, the latter sharp by the same amount. In it the

diatonic semitone is pure. The deviation of this temperament is only about

two-thirds that of the 1/4-comma system.

Table 28. 1/5 - Comma Temperament (Verheijen, Rossi)

There is an odd reference to the 1/5-comma temperament. Dechales
28

gave a monochord which he called the “Diatonic scale of Guido of Arezzo.”



It is, however, a chromatic scale, and, so far as can be ascertained, has

nothing in common with any of the ideas expressed by Guido.

It seems evident that Dechales has intended the monochord in Table 29

for the 1/5-comma temperament. Its ninth note differs greatly from the cents

value given in the previous table; but the note is A
b
 in Dechales’ monochord

and would naturally be more than a comma higher than the G
#
 more

commonly used. Other divergences can be explained by the fact that

Dechales has not expressed his numbers with great accuracy. However, the

mean value for his diatonic semitone is 111.4, against 112.0 for the 1/5-

comma temperament; for his chromatic semitone, 84.0 cents against 83.2.

How he reached the conclusion that Guido favored such a temperament

remains a mystery. Actually Dechales himself ascribed the 1/4-comma

temperament to Guido (rather than the 1/5-comma), contrary to the evidence

of this monochord.

Table 29. Dechales’ “Guidonian” Temperament (1/5 - Comma)

The 1/5-comma variety of meantone temperament comes close to the 43-

division. As such, it is discussed briefly in Chapter VI, with the principal

reference to Sauveur.

Another temperament discussed by Rossi
29

 has its fifths flattened by 2/9

comma (see Table 30). He merely called it “another tempered system,”

without ascribing it to any theorist. Romieu identified this temperament with

the 31-division, and thus credited it to Huyghens.
30

 Actually, as we have

already said, the 1/4-comma temperament comes closest to the 31-division.

But perhaps other writers before Romieu confused these temperaments. For

example, Printz
31

 spoke of a “still earlier” temperament that takes 2/9

comma from each fifth–earlier, perhaps, than Zarlino’s 2/7-comma

temperament, which he had been previously discussing. He also might have

meant Vicentino’s 31-division, since there are no early references to the 2/9-

comma temperament.



Table 30. Rossi’s 2/9 - Comma Temperament

Since 2/9 is the harmonic mean between 1/4 and 1/5, the deviation for

this temperament is approximately the mean of the deviations of the other

two temperaments. Like Zarlino’s 2/7-comma temperament, its third is

altered half as much as its fifth, being 1/9 comma sharp. Its augmented

second, as F–G
#
, is pure. The 74-division corresponds to the 2/9-comma

temperament, and Drobisch liked this division best of all systems that form

their major thirds regularly.

Schneegass gave an interesting geometrical construction for what was

much like the common meantone temperament, but more like the 2/9-

comma temperament
32

. His contention was that the diatonic semitone

contains 3 1/4 “commas” and the chromatic semitone 2 1/4. (These commas

of 35.3 cents have nothing in common with either the ditonic [23.5] or the

syntonic [21.5] comma). Thus the tone contains 5 1/2 commas, and the

octave 5 × 5 1/2 + 2 × 3 1/4 = 34 commas. As is shown in Chapter VI, the

34-division has fifths that are almost 4 cents too large and thirds that are 2

cents too large. But this was not what Schneegass had in mind. His

theoretical fifth had the ratio 160:107, or 696.6 cents, which is precisely the

size of the meantone fifth, and he directed that this ratio be used twice to

form the tone.

Then came the application of the doctrine about commas: A right

triangle was to be constructed, with the space of the tone, G–A, as base, and

thrice this length for the altitude (see Figure A). Note that “space” here does

not refer to the total length of a line, but rather to the distance from one point

of division to another Since 3 1/4:2 1/4 = 13:9, the acute angle at the top was

to be divided in the ratio of 13:9, with the larger angle toward A. The point

where this line cut the base was to be G
#
. Now tan

-1
1/3 = 18° 26’,and 13/22

of this angle is 10° 53’. The space between G
#
 and A, then, would be 3 tan

10° 53’ = .57681 of the space between G and A. From the figures in his

table, the division was made with extreme care. The ratio in the table of the

space from G
#
 to A to the space from G to A is 15/26 or .57692. By a series



of lines parallel to the base, he cleverly divided the other tones (B
b
–C, C–D,

E
b
–F, and F–G) into chromatic and diatonic semitones proportional to the

division of G–A.

Fig. A. Schneegass’ Division of the Monochord Reproduced by courtesy of

the Sibley Library of the Eastman School of Music

To examine the assumption that Schneegass made, let us designate as α

the angle 10° 53’ and as β the angle 18° 26’, and as L the length for the note

A. Then the length for G
#
 was L + tan α, and for G it was L + tan β. His

assumption:

In general this would be only a rough approximation. In this case, where β :

α = 22:13, it works very well indeed.

Schneegass’ actual fifth, G–D,of 698.1 cents is a little larger than his

theoretical fifth of 696.6, and the mean of all 11 good fifths is 697.2 cents.

This last figure is precisely the fifth of the 2/9-comma temperament. The

mean value of his tones is 194.0 cents, as compared with 194.4 cents of the

2/9-comma temperament, and his geometrical division of the tones yields

semitones of 113.9 and 80.1 cents, compared with 114.0 and 80.4 cents.



Schneegass’ actual fifth has approximately the ratio 226:151, instead of

his theoretical 160:107. It is idle to speculate why his figures fail to

correspond with his theory, or why they agree so beautifully with the 2/9-

comma temperament. The significant thing is that they agree so well with

themselves, which is an indication of the soundness of his mathematics!

There is, however, one puzzling clue to his division of the tone. Suppose the

space of the tone G–A had been divided arithmetically in the ratio of 13:9,

instead of the more complicated division of the angle actually used. Then

Schneegass’ G
#
 would have been at 86.100 instead of at 85.967. This would

have made the G
#
 3.3 cents lower than in the table, and his tone would have

been divided into semitones of 117.7 and 76.0 cents. Now the semitones of

the 1/4-comma temperament are of 117.1 and 76.0 cents respectively. Thus

an arithmetical division of his tones would have come close to the

temperament which is suggested by his theoretical fifth. However, his actual

division (Table 31) with a 15:11 ratio, is very consistent with itself, as well

as with the 2/9-comma temperament.

Table 31. Schneegass’ Variety of meantone Temperament

Robert Smith
33

 is responsible for three wholly unsatisfactory varieties of

the meantone temperament. He told first of a Mr. Harrison, who tuned his

viol by “taking the interval of the major third to that of the octave, as the

diameter of a circle to its circumference....It follows from Mr. Harrison’s

assumption, that his 3rd major is tempered flat by a full fifth of a comma.” If

the ratio of the major third to the octave is l : π, the third will have 382.0

cents, or be 1/5 comma flat, as Smith said. The fifth will then be tempered

by 3/10 comma. Romieu
34

 barely mentioned 3/10- and 3/11-comma



temperaments, but did not discuss them on the ground that they were too like

temperaments with unity in the numerator. Except for a few references to

Smith and this tuning by π, the 3/10-comma temperament has escaped

further notice (see Table 32).

Table 32. Harrison’s 3/10 - Comma Temperament

Since 3/10 is about the same as 2/7, the deviation for this temperament is

approximately the same as for Zarlino’s, both being inferior to just

intonation. It has no special features to recommend it, since its one natural

feature, the π ratio, is something to be determined by ear or by logarithms,

and would not make the construction of a monochord any simpler.

After referring to Harrison’s system, as quoted above, Smith continued,

“My third determined by theory, upon the principle of making all the

concords within the extent of every three octaves as equally harmonious as

possible, is tempered flat by one ninth of a comma; or almost one eighth,

when no more concords are taken into the calculation than what are

contained within one octave.” Later he showed that “to have all the concords

in four octaves made equally harmonious,” the thirds will be 1/10 comma

flat.
35

With the third flat by 1/9 comma, the fifth will be tempered by 5/18

comma, a quantity impossible to judge by ear. In the second temperament,

with the third 1/10 comma flat, the fifth will be 11/40 comma flat. The

difference between these values of the fifth is only 1/360 comma! Therefore

the temperaments would not vary for any note by as much as one cent. For

this reason only the first of Smith’s temperaments is shown in Table 33.



Table 33. Smith’s 5/18 - Comma Temperament

Since 5/18 is also approximately the same as 2/7, Smith’s temperament is

only a little better than Zarlino’s. We have previously indicated that the 50-

division has usually been considered the equivalent of the 2/7-comma

temperament. Smith asserts, however, that his temperament corresponds to

the 50-division, the error of the fifth in the latter being 41/148 comma. He is

entirely correct in his claim.

Smith did not suggest, however, that the octave be divided into fifty

parts–merely that “a system of rational intervals deduced from dividing the

octave into 50 equal parts,... will differ insensibly from the system of equal

harmony.” His desire is more modest–to have at least 21 different pitches in

the octave, properly to differentiate the sharps, naturals, and flats. On the

organ and harpsichord this could be done by adding extra pipes and strings.

Performance would be facilitated by having “seven couples of secondary

notes,” governed by stops, so that the appropriate notes for a particular piece

could be chosen. Of course, upon an instrument with 19 notes to the octave

(the other two would be of little use), Smith’s temperament, like Zarlino’s

and Salinas’, would be far more acceptable than on the ordinary keyboard.

Smith himself considered that ordinary equal temperament “far exceeds”

both the 31- and 50-divisions, because of the cumbersomeness of the latter

systems.

The only other important variety of the meantone temperament was that

practiced by Silbermann and his contemporaries. According to Sorge,

Silbermann tempered his fifths by 1/6 comma.
36

 Since Sorge himself made

no distinction between the syntonic and ditonic commas, we might divide

either. If we divide the ditonic comma, the deviation is precisely the same as

for the Pythagorean tuning, M.D. 11.7, S.D. 11.8. But, for better comparison

with the other varieties of meantone temperament, let us divide the syntonic

comma. Then the major third is 1/3 comma sharp, and the tritone is pure (see

Table 34).



Table 34. Silbermann’s 1/6 - Comma Temperament

Romieu
37

 adopted the 1/6-comma temperament as his “temperament

anacratique,” showing its correspondence to the 55-division. A generation

after Romieu, Barca called this temperament the “temperamento per comune

opinione perfettisimo,”
38

 and showed that it could be approximated by

multiplying both terms of the ratio 81:80 by 6 and then tempering the fifth

by the mean ratio 483:482, which gives 241:161 for the tempered fifth. (A

better approximation is 220:147.) From additional references to the 55-

division in Chapter VI, it would appear that this method of tuning was in use

for well over a century. As a system upon which modulations might be made

to any key, it was much better than the 1/4-comma meantone system,

although inferior to most of the irregular systems discussed in Chapter VII.

Romieu mentioned temperaments of 1/7, 1/8, 1/9, and 1/10 commas, but

did not consider them sufficiently important to discuss. The 1/10-comma

temperament was included among Marpurg’s many temperaments.
39

Otherwise none of these temperaments has been advocated by any of our

theorists. They should be presented, however, in order to complete our study

of regular temperaments approaching equal temperament (see Tables 35–

38). The syntonic comma has been divided in each case. With the exception

of some of Marpurg’s symmetrical versions of Neidhardt’s unequal

temperaments, the temperaments shown in Tables 37 and 38 come closer to

equal temperament than any divisions that were not practical approximations

to it.

Table 35. 1/7 - Comma Temperament



Table 36. 1/8 - Comma Temperament

Table 37. 1/9 - Comma Temperament

Table 38. 1/10 - Comma Temperament

1
 Hugo Riemann, Geschichte der Musiktheorie (Berlin, 1898), p. 327.

2
 See Chapter VII for Grammateus.

3
 R. P. Claudius Franciscus Milliet Dechales, Cursus seu mundus mathematicus (Lugduni, 1674),

Tomus Tertius, pp. 15–17.
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Chapter IV. EQUAL TEMPERAMENT

The first tuning rules that might be interpreted as equal temperament were

given by Giovanni Maria Lanfranco.
1
 As stated, these rules were for

clavichords and organs (Monochordi & Organi), but Lanfranco extended

them also to the common stringed instruments of his time. Thus there is none

of the confusion that arose later when the keyboard instruments were tuned

in one manner, the fretted instruments in another.

Lanfranco’s essential rules concern the tempering of the fifths and the

thirds: the fifths are to be tuned so flat “that the ear is not well pleased with

them,” and the thirds as sharp as can be endured. There seems to be a

distinction here: for a fifth might be tuned only slightly flat and the ear

would not then be wholly pleased with it; but the thirds are to be only a

shade less harsh than those which cannot be endured at all.

Most of Lanfranco’s contemporaries still knew no tuning but the

Pythagorean, with its pure fifths and impossibly sharp thirds. Lanfranco’s

rules seem to represent a temperament of the Pythagorean tuning, rather than

of just intonation. Equal temperament then fits his directions excellently. As

further evidence, Lanfranco divided the notes to be tuned into two classes,

sharps and flats. As with the meantone temperament, the sharps included F
#
,

C
#
, and G

#
, “although most of these are also common to the flat class, if not

in tuning, at least in playing.” But, although the flats proper included only B
b

and E
b
, this class “occasionally needs in playing the black keys F

#
 (G

b
) and

C
#
 (D

b
).” As Kinkeldey says, “the enlargement of the major third, the

diminution of the minor third, the equivalence of the notes C
#
 and D

b
, F

#
 and

G
b
–these are essential departures from his contemporaries.”

2

Aurelio Marinati
3
 honored Lanfranco by inserting in his “example of the

tuning of clavichords and organs” a word-for-word account of Lanfranco’s

system, complete even to the title–without, however, giving him credit for it.

Another plagiarist, Cerone, sufficiently appreciated Lanfranco to copy out

his system for the benefit of organ-builders.
4
 At the time when these men

were writing, the meantone temperament was the recognized tuning norm



for keyboard instruments. It is rather surprising that Cerone in particular,

who had presented Zarlino’s 2/7-comma system in detail, did not seem to

realize that there was a conflict between Zarlino’s flat and Lanfranco’s sharp

major thirds.

Lodovico Zacconi
5
 was more astute. He presented no tuning rules of his

own, saying that it is “better that those who wish to know and to see should

look to the source and to the original authors.” For keyboard instruments he

recommended Aron’s meantone temperament. “As for the other instruments,

such as the viole da braccio, viole da gamba, violins, and others, you can

look at the end of Giovanni Maria Lanfranco’s book, which indicates clearly

how each one is to be tuned.”

In Zacconi’s day and long before it, the fretted instruments were said to

have equal semitones. To Zarlino, Salinas, and Galilei this meant equal

temperament, with all semitones equal. To Grammateus and Bermudo, only

ten semitones were equal, the others being smaller; to Artusi, and

presumably also to Bottrigari and Cerone, there were ten equal semitones,

the other two being larger. But, of these three types of temperament–equal,

modified Pythagorean, and modified meantone–only equal temperament had

both flat fifths and sharp thirds in addition to equal semitones. Therefore,

Zacconi, writing only sixty years after Lanfranco, is practically saying that

the latter’s rules represent equal temperament. In view of the excellent

tuning methods of Lanfranco’s immediate predecessors, Grammateus and

Schlick, it is very likely that Lanfranco did intend equal temperament for all

instruments, including clavichords and organs.

Later writers who gave practical tuning rules for equal temperament

were often no more precise than Lanfranco had been. Jean Denis,
6
 for

example, said nothing about the size of the thirds. But all the fifths are to be

lowered a trifle (d’un poinct), “and all the fifths ought to be tempered

equally.” Denis may even have had some variety of meantone temperament

in mind, for he directed that the tuning should begin with E
b
 and end with

G
#
. But if his “toutes” means what it says, his was equal temperament.

Godfrey Keller’s tuning rules for harpsichord or spinet were widely

circulated, having been reprinted in the appendix to William Holder’s

Treatise . . . of Harmony (London, 1731), and in Part VI of Pierre Prelleur’s

long popular Modern Musick-Master.
7
 Although they can refer to nothing

but equal temperament, they are by no means accurate: “Observe all the

Sharp Thirds must be as sharp as the Ear will permit; and all Fifths as flat as



the Ear will permit. Now and then by way of Tryal touch Unison, Third,

Fifth, and Eighth; and afterward Unison, Fourth, and Sixth.” It is impossible

for the thirds to be very sharp and the fifths simultaneously very flat; for in

the 1/5-comma variety of meantone temperament, in which the error of the

fifths and the thirds is equal, the error is not large. Keller’s rules would read

better if he had said that the fifths were to be only slightly flat.

Barthold Fritz
8
 gave tuning rules for equal temperament that merited the

approval of Emanuel Bach, to whom he had dedicated his little book. Bach

said that “in my [Fritz’s] few pages everything had been said that was

necessary and possible, and that would satisfy far more needs than the

sundry computations with which many a man has racked his brains; since the

latter method of instruction was only for very few people, but mine was for

everybody, the computers not excepted, because they depend upon the

judgment of the ear as well as the others.”
9

Fritz’s rules were very simple. After going from F to A by four tempered

fifths, he said, “I now have the already pure F as a major third to this A, and,

by touching the A and by testing it with F, can hear whether it sounds sharp

enough or so much upwards that the beats are about the rapidity of eighth

notes in common time.”
10

Fritz began his tuning in the octave below middle C. From William Braid

White’s table,
11

 the tempered F - A in this octave will beat about 7 times per

second, or over 400 times in a minute. Even allowing for the somewhat

lower pitch of the eighteenth century, Fritz’s eighth notes would be very fast,

unless by “common time” he meant alla breve.

Mersenne
12

 also gave a practical tuning hint for equal temperament

when he said, “Certain people believe that they can find the preceding

accord of the equal semitones by beginning ut, re, mi, fa, etc. on each key of

the spinet, or by the number of tremblings or beats which the fifth and other

tempered consonances make: for example, the fifth beats once in each

second when it is tempered as it should be (as much for the organ as for the

spinet); whereas when it is just it does not beat at all.” From White’s table,

Mersenne’s rule would apply best to the fifth D–A in the octave above

middle C, and approximately to other fifths in that vicinity.

Alexander Ellis’ practical rules for the formation of equal temperament
13

may be paraphrased as follows: If one tunes by upward fifths and downward

fourths within the octave above middle C, each fifth should beat once per

second, and each fourth three times in two seconds. Ellis stated that if this



rule is followed accurately, the error for no pitch will be greater than two

cents. Again using White’s useful table, we find that the mean value of the

beats of the tempered fifths in the C–C octave is 1. 02 and of the tempered

fourths, 1.47, proving that Ellis’ rule is correct.

White himself “lays the bearings” in the F–F octave,
14

 just as Fritz did.

Since the ratio of a tempered fifth is approximately 3:2, one might suppose

that he would advocate beating rates that are 2/3 of Ellis’ values: fourths

once per second, and fifths twice in three seconds. However, he recommends

that the fifths beat three times in five seconds, or 36 times per minute, and

suggests setting a metronome at 72, with the bell ringing at every second

tick. Since, from his own table, the mean value of the beats of his tempered

fifths is .68 rather than .60, he would get better results from setting the

metronome at 80.

Bossier’s method
15

 for achieving equal temperament is reminiscent of

Aron’s method for the meantone tuning. Aron, it may be remembered, first

tuned his major third pure and then tuned equally flat the four fifths that

were used in constructing the major third. Bossler first divided the octave by

ear into three equal parts–C-E-G
#
-C. Then he tuned a group of four fifths, as

C-G-D-A-E, slightly flat, so that the last would give the sharp major third

already found. The method would be continued until the entire octave was

tuned. Having these first three notes fixed gave him points of reference, so

that he could never go far wrong. But he realized that the human ear is

fallible, for he recommended that the tuner buy “steel forks from Frankfurt

or Leipzig for all twelve notes.”

Geometrical and Mechanical Approximations

One of the famous problems of antiquity was the duplication of the cube.

It had been proved that the construction of the cube root of 2 could not be

accomplished by Euclidean geometry, that is, by compass and ruler. This is

the precise problem involved in the solution of equal temperament by

geometry, if Bossier, for example, had desired to construct a monochord

upon which would be located his C-E-G
#
-C.

The first sixteenth century writer to suggest a geometrical or mechanical

means of solving equal temperament was Francisco Salinas.
16

 Let him

explain his method: “We judge this one thing must be observed by makers of

viols, namely, that the octave must be divided into 12 parts equally



proportional, which 12 will be the equal semitones. And since they cannot

accomplish this by the 9th of the 6th book [the mean proportional

construction] or by any other proposition of Euclid, it will be the task to use

the instrument which we said was called the mesolabium, invented (as they

believe) by Archimedes: by which they will be able to obtain aline divided

into as many equal parts as they wish. We have not bothered to append the

rule of its construction here, because mention is made of its principle by

Vitruvius in his 9th book on architecture; from whom and from his

expositors they will be able to obtain the method of constructing it: for it is

to practical men for framing mqst matters not only useful, but well-nigh

indispensible.”

The mesolabium had been previously advocated by Zarlino for

constructing his 2/7-comma meantone temperament, and later Zarlino was to

follow Salinas’ lead in recommending it for equal temperament. Hutton

defined the word as follows: “Mesolabe, or Mesolabium, a mathematical

instrument invented by the ancients, for finding two mean proportionals

mechanically, which they could not perform geometrically. It consists of

three parallelograms, moving in a groove to certain intersections. Its figure is

described by Eutocius, in his Commentary on Archimedes. See also Pappius,

Lib. 3.”
17

With the aid of a clear diagram (Figure B) James Gow
18

 has explained

the operation of the mesolabium as follows: “If AB, GH be the two lines

between which it is required to find two mean proportionals, then slide the

second frame under the first and the third under the second so that AG shall

pass through the points C, E, at which the diameters of the second and third

frames, respectively, cease to be visible. Then CD, EF are the required two

mean proportionals.”

Fig. B. The Mesolabium (From James Gow, A Short History of Greek

Mathematics [1884])



Although Zarlino contended that the mesolabium might be used for

finding any number of means, by increasing the number of parallelograms,

his diagiam is for two means only. Of course for equal temperament or for

the 1/3-comma meantone temperament, two means would suffice. But

Salinas also advocates it for an unlimited number of means, and Rossi would

find the thirty means for Vicentino’s division by its aid. Mersenne,
19

however, in commenting upon Salinas” construction for equal temperament,

said it was incorrect if he intended to use the mesolabium for more than two

means, because the instrument mentioned by Vitruvius “is of no use except

for finding two means between two given lines.” We shall not attempt to

pass judgment upon these conflicting opinions, but it would seem that the

difficulty of the process would be increased greatly with an increasing

number of means.

Zarlino
20

 has given three methods by which “to divide the octave

directly into 12 equal and proportional parts or semitones.” The first used the

mesolabium, as already mentioned. The second used the method of Philo of

Bysantium (second century, B.C.), which consisted of a circle and a variable

secant through a point on its circumference. The third is a variation of the

first, in that the string-length for one note is found by the mesolabium, and

then the lengths for the other notes are found by similar proportions.

Mersenne,
21

 too, has contributed non-Euclidean methods for finding two

geometric means. The first, ascribed to Molthée, used straight lines only, in

the form of intersecting triangles. The other method (Figure C) was

furnished by Roberval and used a parabola and a circle.
22

 Kircher
23

combined the Euclidean method for finding one mean proportional with a

mechanical method for finding two means. This latter is by still another

method, consisting of two lines at right angles and two sliding L-shaped

pieces, like carpenters’ squares (Figure D). According to Rossi,
24

 Kircher’s

is the method of Nicomedes, and Rossi considered it “more expeditious”

than others that have been mentioned. Marpurg
25

 ascribed Kircher’s method

to Plato, and added methods by Hero and by Newton, together with

Descartes’ method for finding any number of mean proportionals. Thus we

have more than half a dozen geometrical and mechanical methods, proposed

particularly for constructing a monochord in equal temperament.



Fig. C. Roberval’s Method for Finding Two Geometric Mean Proportionals

(From Mersenne’s Harmonie universelle) Reproduced by courtesy of the

Library of Congress

Fig. D. Nicomedes’ Method for Finding Two Geometric Mean Proportionals

(From Kircher’s Musurgia universalis) Reproduced by courtesy of the

Library of Congress

Since these mechanical methods for finding two mean proportionals are

rather awkward, the attempt has been made to use a satisfactory ratio for the

major third or minor sixth, so that the remainder of the division could be

made by the Euclidean construction for finding a single mean. Mersenne
26



has given two such methods. In the second, which he said is “the easiest of

all possible ways,” the just value of the minor sixth (8:5) is used. By mean

proportionals, eight equal semitones are found between the fundamental and

the minor sixth, and then, in like manner, the remaining four semitones

between the minor sixth and the octave.

As can be seen from Table 39, this method is not extremely close to

correct equal temperament, because the just value of the minor sixth is about

14 cents higher than its value in the equal division. One might have expected

the usually astute Mersenne to have chosen a tempered value in the first

place. The equally tempered minor sixth is very nearly 100:63, as can be

readily seen in Boulliau’s table given by Mersenne, where it bears exactly

this value. If this fraction is too difficult to work with, 27:17 will serve

almost as well, and 19:12 comes rather close also. Any of these other ratios

would have given a more satisfactory monochord than his. In Table 40,

19:12 is used for the minor sixth.

Table 39. Mersenne’s Second Geometrical Approximation

Table 40. Geometrical Approximation (19:12 for Minor Sixth)

But we cannot be supercilious regarding Mersenne’s other practical

method for obtaining two mean proportionals. Mersenne himself correctly

said, “It serves for finding the mechanical duplication of the cube, to about

1/329 part.”
27

 By the familiar Euclidean method he found the mean

proportional between a line and its double, subtracted the original line from

the mean, and then subtracted this difference from the doubled line. The



length thus found was the larger of the desired means–that is, the string-

length for the major third. In numbers, this ratio is  or .79289,

which represents 401.8 cents. The result is shown in Table 41, the remaining

values being found by mean proportionals as in Mersenne’s second

approximation. This is an extremely fine geometrical way to approximate

equal temperament.

Table 41. Mersenne’s First Geometrical Approximation

Table 42. Hô Tchhêng-thyēn’s Approximation

Numerical Approximations

The earliest numerical approximation for equal temperament comes from

China. About 400 A.D., Hô Tchhêng-thyēn gave three monochords for the

chromatic octave, with identical ratios, but with the fundamental taken as

9.00, 81.00, and 100.0 respectively.
28

 (String-lengths are given for the first

of these tables only, since they illustrate the manner of its formation better

than the other two.)

Table 42 shows a remarkable temperament for the time when it was

constructed, comparable to the brilliant solution of the problem of equal

temperament by Prince Tsai-yü over a thousand years later. At the time of

Tchhê-thyēn the Pythagorean tuning was the accepted system in China. If we

assume the calculation to begin with the higher C at 450 and proceed in strict



Pythagorean manner to B
#
 in the lower octave, the B

#
 will be at 888 instead

of 900. This is 12 units too short. Let us, therefore, add 1 unit to 600, the

value for G; 2 units to 800, the value for D; 3 units to 533, the value for A;

and so forth, along a sequence of fifths, until we reach the correct value for

C at 900. Tchhêng-thyēn’s figures agree precisely with our hypothesis.

A linear correction, such as Tchhêng-thyēn made, often provides a good

approximation, as we shall see elsewhere in this chapter. The difficulty with

his correction is that if he had started with the lower C and had continued

until he had reached the higher B
#
, the latter would have been only 6 units

too short instead of 12. By adding 10 parts for A
#
, 8 for G

#
, etc., he obtained

pitches that were much too low. If he had added 12 parts to 444 for the

higher B
#
, the corrected length, 456, would have been at 1177, instead of

1200 cents, 23 cents flat! Let us consider the effectof adding precisely half

the correction for each note. This would work well for the odd semitones, C

D E F
#
 G

#
 A

#
 B

#
, as might have been expected; but the lower three even

semitones, C
#
 D

#
 E

#
, are then as sharp as the higher odd semitones were flat

before! We shall have better success if we continue the series of whole tones

from G to Fx, the latter at 296 needing a correction of 4.2 to make a perfect

octave to G, 600.5. Then the intermediate notes can be given a proportional

linear correction, which would be doubled for the three notes C
#
 D

#
 E

#
 when

transposed to the lower octave. This improved temperament is shown in

Table 43. The greatest error is at C
#
.

Table 43. Hô Tchhêng-thyēn’s Temperament, Improved

The arithmetical division of the 9:8 tone into 17:16 and 18:17 semitones

was known to all sixteenth century writers through Ptolemy’s demonstration



that Aristoxenus could not have obtained equal semitones in this way. But

Cardano (1501–76) may have been referringto some practical use of the

18:17 semitone when he wrote: “And there is another division of the tone

into semitones, which is varied by putting the tone between 18 and 16; the

middle voice is 17; the major semitone is between 17 and 16, but the minor

between 18 and 17, the difference of which is 1/288. It is surprising how the

minor semitone should be introduced so pleasingly in concerted music, but

the major semitone never.”
29

The simplest way to construct a monochord in equal temperament is to

choose a correct ratio for the semitone and then apply it twelve times, a

construction that can be performed very easily by similar proportion.

Vincenzo Galilei
30

 must be given the credit for explaining a practical, but

highly effective, method of this type. For placing the frets on the lute he used

the ratio 18:17 for the semitone, saying that the twelfth fret would be at the

midpoint of the string. He went on to say that no other fraction would serve;

for 17:16, etc., would give too few frets, and 19:18, etc., too many. Since

18:17 represents 99 cents, 17:16, 105 cents, and 19:18,94 cents, Galilei was

correct in his contention. But he did not give a mathematical demonstration

of his method. It remained for him a proof by intuition. The string-lengths in

Table 44 were calculated by Kepler.
31

Table 44. Galilei’s Approximation

Mersenne
32

 testified that Galilei’s method was favored by “many makers

of instruments.” The Portugese writer Domingos de S. Jose Varella
33

 gave a

“way to divide the fingerboards of viols and guitars.” This is precisely

Galilei’s method, and Varella told how the construction could be continued



by similar proportion after thefirst 18:17 semitone had beenformed.

Likewise Delezenne
34

 showed that 18:17 is very near the value for the

correct equal semitone, and gave a geometrical construction for it used by

Delannoy, the instrument maker, in placing the frets upon his guitars.

Two other early nineteenth century references to what Garnault
35

 called

the “secret compass” of the makers of fretted instruments were given in his

tiny and not very trustworthy monograph on temperament. The first was

from the Robet-Maugin Manuel du Luthier (1834), which stated that if the

string is 2 feet in length, the first semitone will be at a distance of 16 lines

from the end; this represents 16/2×12×12 = 1/18 the length of the string, thus

giving 18:17 for the ratio of each semitone.

Garnault’s second reference was to the Bernard Romberg ’cello method

(1839),
36

 which he said had been adopted by Cherubini for use in the Paris

Conservatoire. Romberg’s directions were much the same as those given

previously. Although Garnault does not mention this, Romberg added that

the directions given were for equal temperament, but the more advanced

player would often make the sharped notes sharper and the flatted notes

flatter than these pitches–another confirmation of the quasi-Pythagorean

tuning of instruments of the violin family.

These references to the 18:17 semitone cover two and a half centuries. It

is probable that they could be brought much nearer our own times if the

makers of fretted instruments were given a chance to express themselves.

We must accept Galilei’s method, therefore, as representing the

contemporary practice. A player on a lute was not going to bother with the

mesolabium or with a monochord on which were numbers representing the

successive powers of the 12th root of 2. But he could place his frets by a

simple numerical ratio such as 18:17, and we are glad that the frets thus

placed served their purpose so well.

Critics of Galilei were not slow to show that the 12th fret would not

coincide precisely with the midpoint of the string. Passing by the

inconveniently large numbers of Zarlino’s ratios, we come to Kepler’s result:

if the entire string is 100,000 units in length, Galilei’s 12th fret will be at

50,363 instead of 50,000. As we have already stated, his semitone has only

99 cents, so that the octave contains 1188 instead of 1200.

There are various ways of correcting the octave distortion arising from

the use of the 18:17 semitone. An obvious way is suggested by Mersenne’s

approximations: form only 4 semitones with the 18:17 ratio; then apply



Mersenne’s mean-proportional method to the remaining 8 semitones. The

monochord thus constructed (Table 45) is as good as Mersenne’s first

method.

Table 45. Approximation à la Galilei and Mersenne

An even simpler correction uses linear divisions only: since the length

for the 12th fret is 363 units too great, divide 363 into 12 equal parts and

subtract 30 units for the first fret, 61 for the second, 91 for the third, etc. As

is always the case with this type of correction, there is a slight bulge in the

middle of the octave, but the largest error is only 1.8 cents.

The correction shown in Table 46 lends itself well to numerical

computation, since the fundamental and its octave are in round numbers. But

in practice, with a geometrical, not a numerical, construction, the following

would be simpler and is even a trifle better: if 50,363 be considered the real

middle of the string, the octave will be perfect. To make it the middle,

shorten the entire string by twice the difference between 50,000 and 50,363,

that is, by 726. Then everyone of the lengths as given by Kepler will be

diminished by 726, and the 12th fret, 49,637, will be the exact middle of the

string, 99,274. Note again the slight bulge in the middle of the division

(Table 47), with the greatest distortion 1.0 cent.



Table 46. Galilei’s Temperament, with Linear Correction, No. 1

Table 47. Galilei’s Temperament, with Linear Correction, No. 2

The improvements upon Galilei’s tuning shown in Tables 46 and 47

could have been made by practical tuners. They are better divisions than

many of the numerical expressions of equal temperament which will be

shown later. They are better also than the temperament our contemporary

tuners give our own pianos and organs. So there is nothing more that needs

to be said, as far as practice is concerned. There are, however, several other

and more subtle ways of improving Galilei’s tuning which we should like to

mention. These are of speculative interest solely.



Let us return to the false octave generated by the 18:17 semitone.

Mersenne suggested that “if the makers should increase slightly each 18:17

interval, they would arrive at the justness of the octave.” The 11th fret is at

53326, leaving a ratio of 53326:50000 for the remaining semitone. This, as

its cents value indicates (111 cents), is about the size of the just 16:15

semitone. Let us pretend that the final digit in the antecedent is 5, and reduce

the ratio to 2133:2000. Now let us average this semitone with the eleven

18:17 semitones, using the arithmetical division generally followed by

sixteenth century writers. Our desired semitone is 

. In decimal form this is .9438779, as

compared with the true equal semitone, .9438743. The successive powers of

this decimal would deviate more and more from those of the 12th root of 2,

but even then the octave would be only .1 cent flat.

Another way of correcting Galilei’s tuning is based upon the fact that his

octave would be 12 cents, that is, half a Pythagorean comma, flat. A

somewhat crude, but practical, manner of adjusting the octave would be to

form four 18:17 semitones, from C to E, then take the next five notes, F

through A, as perfect fourths to the first five, and then the two remaining

notes, B
b
 and B, as perfect fourths to F and F

#
. A satisfactory monochord is

shown in Table 48. Note particularly how much smaller its standard

deviation is than that of Galilei’s actual tuning.

As an approach to a finer division using Pythagorean intervals, let us

turn to Pablo Nassarre.
37

Table 48. Galilei’s Temperament, Combined with Pythagorean

                           He had discussed equal semitones upon fretted instruments,

using much the same language as Praetorius,
38

 to the effect that a 16:15

diatonic semitone contains 5 commas and a 25:24 chromatic semitone 4



commas, but that these semitones have the peculiarity that they are all equal,

containing 4 1/2 commas. They are obtained by a linear division of the 9:8

tone into 18:17 and 17:16 semitones. To place the frets, three or four 9:8

tones are constructed, and the distance between each pair of frets divided

equally to form the semitones. Of course an arithmetical division of tones

will not form precisely equal semitones. Furthermore, there is a fairly large

distortion for the last semitone if the process is carried out through twelve

semitones. Of course, as with Galilei’s method, no single string would have

had twelve frets. In Table 49 the division is made for the entire octave. The

length for B was taken as the arithmetical mean between A
#
 and the middle

of the string.

Table 49. Nassarre’s Equal Semitones

If Nassarre had divided each 9:8 tone into precisely equal semitones by a

mean proportional, his errors would have been smaller.

Table 50. Nassarre’s Temperament Idealized



              It is not particularly difficult to set down this temperament in

figures, since the square root need be performed only for C
#
, after which a

second series of 9:8 tones can be formed, starting with this note. If B is taken

as the geometric mean between A
#
 and C, its length is 52675, or 1110 cents,

making the mean deviation 3.3, and the standard deviation 4.5. However, for

the sake of an approximation to be made in Table 50, B is taken as the

geometric mean between A
#
 and B

#
, with a relatively high standard

deviation.

If we now compare the cents values of the temperament shown in Table

50 with those of Galilei’s tuning, we shall find that the error of the former is

opposite to and twice as great as that of the latter. Therefore, for every pair

of string-lengths, subtract the smaller (Nassarre) from the larger (Galilei),

and then subtract 1/3 the difference from the larger number. The excellent

monochord shown in Table 51 results.

Table 51. Temperament à la Galilei and Nassarre

If the idealized Nassarre temperament had been extended one more

semitone, the string-length for the octave would have been 49,328. When

this number is adjusted with the 50,363 of Galilei’s tuning, the octave proper

to the above temperament becomes 50,018 or 1199.5 cents. Let us now make

the same type of octave adjustment as with the original Galilei tuning, by

subtracting 18 from the 12th semitone, and 1 or 2 less for each succeeding

semitone. Then no length varies by more than 2 or 3 units from the correct

value, that is, the maximum variation is less than .1 cent.

This procedure sounds somewhat complicated. It is not necessary to go

through the entire process three times, as shown above, in order to obtain the



final monochord. The ratio for the semitone will be 

. Including the octave correction, the

formula for the string-length of the nth semitone is: 

. Perhaps it would be simpler after all to

stick to cube roots, especially when fortified with a table of logarithms!

Johann Philipp Kirnberger,
39

 however, used a very roundabout method

of attaining equal temperament, believing it to be simpler in practice than

tuning by beating fifths. He showed that the ratio 10935:8192 closely

approaches the value of the fourth used in equal temperament. In practice

this value would be obtained by tuning upward seven pure fifths and then a

major third. In other words, if C° is the lower note,  is regarded to be

the equivalent of , the tempered fourth. The basis for this equivalence

lies in the fact that the schisma, the difference between the syntonic and the

ditonic commas, is almost exactly 1/12 ditonic comma, the amount by which

the fourth must be tempered. The ratio given above becomes, in decimal

form, .7491541..., whereas the true tempered value is .7491535 ... . The

result is an extremely close approximation.

Kirnberger spoke of Euler’s approval of his method, and of Sulzer’s and

Lambert’s publication of it. Marpurg
40

 showed that Lambert’s method, when

applied to an entire octave, will differ for no note by more than .00001. He

praised it as a method that needs no monochord, and believed that the tuning

of the just intervals used in it could be made more quickly and accurately

than the estimation by ear of the tempering needed for the fourth or the fifth.

However, the tuning of a pure major third is so difficult that Alexander Ellis

thought that better thirds can be obtained from four beating fifths than by

tuning the thirds directly. If this be true, a type of tuning in which the

essential feature is a pure major third could not be very accurate, without

considering the labor of tuning eight pure intervals in order to have only one

tempered interval!

Kirnberger’s approximation for equal temperament was next heard of in

England, where John Farey
41

 seems to have discovered it independently. In

Dr. Rees’s New Cyclopedia
42

 we are shown how Farey’s method “differs

only in an insensible degree” from correct equal temperament.



Among the monochords shown by Marpurgis one by Daniel P. Strähle,
43

allegedly in equal temperament, but actually unequal, as can be seen in Table

52. This is a geometric construction of a curious sort, for which Jacob

Faggot computed the string-lengths by trigonometry (see Figure E). In brief,

it went like this: upon the line QR, 12 units in length, erect an isosceles

triangle, QOR, its equal legs being 24 units in length. Join O to the eleven

points of division in the base. On QO locate P, 7 units from Q, and draw RP,

extending it its own length to M. Then if RM represents the fundamental

pitch and PM its octave, the points of intersection of RP with the 11 rays

from O will be the 11 semitones within the octave.

Table 52. Faggot’s Figures for Strähle’s Temperament



Fig. E. Strähle’s Geometrical Approximation for Equal Temperament

Reproduced by courtesy of the Library of the University of Michigan

It is obvious from the construction that the distance between two

consecutive points of division will be greater near R than near P, and hence

that, superficially at least, the division will resemble a series of proportional

lines, as in true equal temperament. But, as Table 52 shows, there is a large

bulge in the middle of the octave, and F
#
, which should be ,

is distorted very greatly. Now, if QR is given, the points of division are

functions of QO (or RO), but they are also functions of QP. It is primarily

the size of the angle QRP that determines the ratios of the string-lengths.

Strähle’s choice of 7 units for QP was unfortunate, or the distortion would

not have been so great.

To reduce the errors in this construction, let us attempt to find a value for

the angle QRP for which the length for F
#
 is correct, . Let A be the

midpoint of QR and B the point where OA cuts RM; so that BM is the

length for F
#
. Then



By the sine law and from 1. and 2.,

From 3. and 4.,

From 2.,

As an approximate solution to 5. and 6.,

From 7., PQ = 7.028. But this is almost exactly Strähle’s figure! A check

reveals that Faggot made a serious error in computing the angles QRP and

RPQ; so that his value for PQ was actually 8.605 rather than 7. Table 53

gives the correct figures for Strähle’s temperament.

Table 53. Correct Figures for Strähle’s Temperament

It is, therefore, possible to achieve superfine results by following a

method essentially the same as Strähle’s. Although unaware of the



possibilities in Strähle’s method, Marpurg has collected many unusual and

interesting temperaments by other men.
44

 Represented two monochords by

Schröter, both of which are excellent approximations to equal temperament

constructed from tabular differences. In the first (Table 54), Schröter

anchored his column of differences upon the notes of the just minor triad, as

C E
b
 G C, with ratio 6:5:4:3. The intermediate notes were obtained by

arithmetical divisions. This column of differences is worth showing as a

monochord in its own right, for the method of construction resembles that of

Ganassi and Reinhard. The mean deviation is about the same as for the

Pythagorean timing, but the standard deviation is larger because the

semitone B–C, with ratio 28:27, is much smaller than the others.

Table 54. Schröter’s Column of Differences, No. 1

In Schröter’s monochord proper (Table 55) the upper fundamental (451)

is the sum of all the differences in the above table, save the first number to

the left (54). Thus the lower fundamental (902) will be a true octave. This

monochord is a highly satisfactory approximation to equal temperament.



Table 55. Schröter’s Approximation, No. 1

Schröter’s column of differences for the second approximation (Table

56), while also containing arithmetical divisions, is constructed more

carefully than the first. The minor thirds D–F and A–C have the unusual

ratio 19:16 or 297 cents. All the notes in the tetrachord G–C are pure fifths

above the notes inthetetrachord C–F. Here the deviation is about the same as

in Grammateus’ tuning, thus ranking among the best of the irregular

systems.
45

Table 56. Schröter’s Column of Differences, No. 2

Schröter’s second approximation (Table 57) is constructed from the

above column of differences in the same manner as was his first. Its

deviations, like those of the column of differences upon which it was based,

are about 1/3 as large as those of the first monochord.



Table 57. Schröter’s Approximation, No. 2

Schröter’s success in building up a monochord by using well-chosen

tabular differences suggests that the same method be applied to Ganassi’s

tuning, which is rather similar to his first column of differences.
46

 The sum

of the twelve numbers of Ganassi’s monochord is 805, which is chosen,

therefore, for the higher fundamental. As might have been expected, the

monochord (Table 58) is very good.

Table 58. Approximation Based on Ganassi’s Monochord



Table 59. Monochord from Difference Column, No. 1

These rather amusing improvements in poor or fair tuning systems

suggest that the method be really put to the test by choosing for the original

monochord an entirely unsatisfactory tuning. Accordingly, the thirteen

numbers from 12 through 24 were chosen (Table 59). This is so perverted a

tuning system that the major third (E), the fourth (F), and the fifth (G) are

precisely a semitone flat according to just intonation. However, a benighted

anonymous writer in the Mercure de France in 1771 declared that if the

entire string were divided into 24 parts, the numbers 12 through 24 would

give all the semitones.
47

 Thanks to the regularity of its construction, the

deviation of this system ranks it somewhere near the meantone tuning!

In the next monochord (Table 60) the deviation is of the same class as

that of Galilei’s tuning. Its higher fundamental, 210, is the sum of the

numbers 12 to 23 inclusive.

Table 60. Monochord from Difference Column, No. 2



For our third monochord (Table 61) we use the lengths of Table 60 as

differences. Here the deviation is about the same as in Schröter’s second

approximation.

In the fourth and last approximation (Table 62) the errors have become

too small to be recorded correctly when five-place logarithms are used.

Apparently, however, the deviation is again about 1/10 that of the previous

monochord.

Table 61. Monochord from Difference Column, No. 3

Table 62. Monochord from Difference Column, No. 4

Objection may be made to Schröter’s approximations, and to ours as

well, on the ground that the fundamentals are not round numbers such as

most of the theorists used for the representation of equal temperament. Let

us see whether we can supply this lack. In our third monochord (Table 61)

the length for F
#
 is 4992. Let this be our higher fundamental. Add 8 to it, and

16 to its double, the lower fundamental. We could then make an arithmetical

division to correct the intermediate numbers. It is little more trouble,



however, to take the two left-hand digits of the numbers in this same

monochord, starting with the value for B
b
, 40. Multiply these and those for

B, 37, by .4, as 16.0, 14.8, and all the pairs of digits to the left of B
b
 by .2.

Add these numbers to the appropriate numbers in Monochord No. 3, and we

have a corrected monochord, in which the maximum error is 4 units, or

about 1 cent (see Table 63). Deviation is as in the original Monochord No. 3

(Table 61).

Table 63. Monochord No. 3, Adjusted

Fortunately, it is possible to make a similar adjustment of our five-digit

monochord, No. 4 (Table 62). Here we shall take as our lower fundamental

the length for E
b
, 99861. We need 139 to make a round number. This is

about twice the length for G in Monochord No. 2. So we divide the numbers

in the second monochord by 2 or by 4, and add to the appropriate numbers in

Monochord No. 4. The maximum error is 6 units, or about 1/6 cent.

A very useful approximation for equal temperament is to express all its

irrational ratios as comparatively small fractions. Alexander Ellis
48

 has made

a table of about 150 intervals within the octave, which he has represented by

logarithms, cents, and ratios, actual or approximate. Since all the intervals of

equal temperament are contained in this table, it is easy to list them

separately, as in Table 65.

Table 64.Monochord No. 4, Adjusted



Table 65. Ellis’ Fractional Approximations

Charles Williamson
49

 has given the material in Table 65, wrongly

ascribing it to Helmholtz rather than to Ellis. By continued fractions he

himself found that the majority of Ellis’ ratios were correct. He objected to

the ratio for the major second (449:400), stating that this interval can be

represented more accurately as the inversion of a minor seventh. The ratios

for the fourth (303:227)and fifth (433:289) he thought were not sufficiently

close either, and should likewise be paired. Ellis’ ratio for the tritone

(140:99) was good, but Williamson preferred to use the ratio for its inversion

(99:70), which is no better.

Williamson remarked that his ratio for the tone (55:49) occurs in Cahill’s

patent for the Telharmonium, and for the tritone (99:70) in Laurens

Hammond’s patent for the Hammond Electric Organ. He had not previously

run across 295:221 or 442:295. It is interesting to note that here, as in many

other instances, Pere Mersenne
50

 has anticipated the modern students of

temperament. Mersenne stated that the minor third of equal temperament is

approximately 6/5 × 112/113 = 672/565. Convergents to this ratio are 44:37

and 157:132, the first of these occurring in both tables above. Mersenne’s

ratio for the major third was 5/4 × 127/126 = 635/504, convergents to which

are 63:50 (as above) and 286:227. For the perfect fifth he gave the ratio 32 ×

886/887 = 1329/887, the convergent to which is 442:295, used by

Williamson.

Williamson’s reference to Hammond’s patent
51

 suggests that the latter’s

ratios be examined in their entirety. (It must be remembered that these ratios

are based on the practical consideration of cutting teeth on gears.) The

difficulty is that, although it is easy enough to reduce Hammond’s

frequencies to ratios with no more than two digits in numerator and

denominator, no one note appears as unity. (The ratios times 320 are the

frequencies from middle C to its octave.) We cannot well compare this with

Table 65. If either F or A, which have the simplest ratios in Table 66, is

given the value of 1, more than half of the ratios will have three digits.



Hence the composite table, Table 67, with decimal equivalents, gives a better

idea of how the three systems compare.

Table 66. Hammond’s Fractional Approximations

Table 67. Comparison of Three Approximations

Hammond has utilized some of the same ratios as Ellis and Williamson.

His tone G–A is 55:49; his minor thirds F–A
b
 and F

#
–A are 44:37; his major

third E
b
–G is 63:50; his tritones E

b
–A and F–B are 99:70. He had another

major third (B
b
–D) with small ratio, 73:46, but this is a poorer

approximation than 63:50. Note that many of Hammond’s ratios are related

in pairs, but not in the same way as Williamson’s. The product of the ratios

for F
#
 and G

#
, F and A, E and B

b
, and B and D

#
 is equal to 3:2. C and D are

not so related. Of course the axis G is approximately the square root of 3:2,

and C
#
, the other axis, the square root of 3:4.

Let us compare these three approximations with the true values for equal

temperament to six places (see Table 67). For Ellis and Williamson these are



the decimal equivalents of the fractions as given. For Hammond the note A

was taken as the fundamental, and his frequencies as given in the patent have

been divided by 1.1.

In our absorption with quasi–equal temperaments that excel many

presumably correct versions, we should not neglect the pioneers who first set

down in figures the monochords constructed upon the 12th root of 2. The

first European known to have formed such a monochord is Simon Stevin,
52

about 1596, who said that since there are twelve proportional semitones in

the octave, the problem is to “find 11 mean proportional parts between 2 and

1, which can be learned through the 45th proposition of my French

arithmetic.” There he had explained that mean proportionals can be found by

extracting roots of the product of the extremes. He now applied this

principle, by representing each semitone as the 12th root of some power of 2

(see Table 68).

Table 68. Stevin’s Monochord, No. 1

In his actual calculations Stevin first computed notes 7,4, and 5, that is,

F
#
, E

b
, and E. These involve no more difficult roots than cubic and quartic.

There is now sufficient material to compute the remaining notes by

proportion, “the rule of three.” Thus the fifth note (7937), divided by the

fourth (8408), gives the second (5440). This method is much easier than to

extract the roots for each individual note, which runs into difficulties with

the roots of prime powers, as for notes 2, 6, 8, and 12 (C
#
, F, G, B), where

the 12th root itself must be extracted. But the method by proportion lacks in

accuracy, for an error for any note is magnified in succeeding notes. Even so,

the maximum error is only .4 cent. The deviation for Stevin’s monochord

lies between those for Schröter’s two monochords.



Stevin has worked out a second monochord for equal temperament upon

the same principle as the first, but with a different order of notes.
53

 Here the

maximum error, for E, is 1 cent. The fact that the two monochords do differ

indicates that proportion is not the ideal method (see Table 69).

At the same time that Stevin was setting down the figures for equal

temperament, or perhaps a few years earlier (1595), Prince Tsai-yü in China

was making a much more elaborate and careful calculation of the same roots

of 2.
54

 We are not told how he performed his calculation, but, since it is

correct to nine places, he must have extracted the appropriate root for each

note separately–and without the aid of logarithms, which were to simplify

the problem so greatly for men who attempted it a few decades later. In some

cases, since the tenth digit will be 5 or larger, modern computers would

round off the number at the ninth digit by substituting the next higher digit.

This is a convention of our mathematics, intended to reduce the error arising

from rounding off a number. Tsai-yü never did this.

Table 69. Stevin’s Monochord, No. 2

Probably the first printed solution of equal temperament in numbers was

made in Europe in 1630, a generation after Tsai-yü’s time, when Johann

Faulhaber solved a problem propounded by Dr. Johann Melder of Ulm.
55

The problem was to divide a monochord 20000 units in length, so that all

intervals of the same size should be equal. Faulhaber did not explain to his

readers how he had arrived at his result (Table 71), presenting it rather as a

riddle. His monochord was for equal temperament, but contained several

errors of 1 in the unit’s place. This is the sort of error likely to occur when

logarithms are used, and we might suppose Faulhaber had made use of the

logarithmic tables printed in his book.



Table 70. Tsai-yü’s Monochord

Table 71. Faulhaber’s Monochord

Mersenne has given a number of different tables of equal temperament.

The most characteristic, to six places, was furnished by Beaugrand, “very

excellent geometer.”
56

 Mersenne also printed a table of first differences for

the numbers in this monochord, to be used in connection with a method by

Beaugrand for constructing the equal semitones. A comparison with Tsai-

yü’s table shows this one to be very inaccurate, the errors being much larger

than if logarithms had been used.

A much more ambitious table was contributed by Gallé.
57

 In this table

the lengths were given to eleven places. Beside it Mersenne printed a table

with 144,000,000 as fundamental, so that the numbers might readily be

compared with those of “the perfect clavier with 32 keys or steps to the

octave,” which had been presented in the book on the organ. This table will

not be included here, for it seems likely that Mersenne himself computed

these numbers from Gallé’s larger table, by multiplying them by .00144. Of

the numbers in the table, the length for D is correct to only five places. The

others agree fairly well with Tsai-yü to the ninth place, although there are

some slight divergences. Beyond the ninth place no digits are correct. If

Gallé was using logarithms, he made some serious errors in interpolation.

But if he was extracting roots, it is difficult to see how he failed to find

correctly the middle number, the length for F
#
, which represents 10

11
 times



the square root of 1/2. It should be ten units larger. The length for E
b
 (10

11

times the fourth root of 1/2) agrees neither with the correct value nor with

the square root of the length for F
#
.

Our final table from Mersenne
58

 was supplied by Boulliau, “one of the

most excellent astronomers of our age.” In it he expressed the string-lengths

for equal temperament in degrees, minutes, and seconds. This is equivalent

to having a fundamental of 14400 in decimal notation, and the errors should

be no greater than for such a table. However, the errors are greater than in

Stevin’s four-place table, with a mean deviation of about 1 cent. We can only

surmise how Boulliau computed his figures. Evidently the sexagesimal

notation is somehow linked with his method of extracting the roots.

Neidhardt printed six-place tables in equal temperament from Faulhaber,

Mersenne, and Bumler, as well as several of his own.
59

 His first original

method was to divide the syntonic comma arithmetically, thus giving rise to

a twofold error. The arithmetical division makes little difference, but the fact

that the syntonic comma is about two cents smaller than the ditonic comma

means that each fifth will be about .2 cent sharper than in correct equal

temperament. Such a division is fairly easy to make, and, as the cents values

indicate, the errors are small. The mean deviation is about 1 cent.

Later, Neidhardt
60

 was to divide the ditonic comma, both arithmetically

and geometrically, the latter method being genuine equal temperament. He

contended, however, that the differences between these two methods were

negligible. Since the greatest variation is 5 units, in tables containing 6

digits, his contention was correct. Note that the numbers for the arithmetical

division are the larger throughout the table. The true values come closer to

his geometrical division, but in every instance lie between the two.

Neidhardt’s contemporary, Jakob Georg Meckenheuser,
61

 printed a table,

“as computed in the first Societäts-Frucht,” evidently the proceedings of

some learned society. From his figures, the syntonic comma is divided

arithmetically, as in Neidhardt’s first monochord. But evidently

Meckenheuser’s division ran to sharps, for seven of his notes were higher in

pitch than the corresponding notes in Neidhardt’s monochord. The higher C

is not a true octave, but a B
#
 tempered by a full syntonic comma, just as his

F is really a tempered E
#
. The ratio of these pairs of enharmonic notes is the

schisma, about 2 cents. Thus even when two temperaments are constructed

upon the same hypothesis and both are intended for equal temperament,



there may be a lack of agreement unless the process is followed through in

exactly the same way for both. If it is true equal temperament, however, it

does not matter in what order the notes are obtained, whether on the sharp or

the flat side or mixed up in anyway whatever. In Table 77, Meckenheuser’s

numbers have been divided by 18. This tends to conceal his rather obvious

arithmetical division of the comma: in the original, every number except one

(the length for D) ends in zero. There the value for G had been 240200000.

This has been corrected to 240250000, since the number should be

240000000 tempered by 1/12 × 1/80 = 1/960.

Table 72. Beaugrand’s Monochord

Table 73. Gallé’s Monochord



Table 74. Boulliau’s Monochord

Table 75. Neidhardt’s Division of Syntonic Comma



Table 76. Neidhardt’s Division of Ditonic Comma

Since the syntonic comma is much easier to form than the ditonic, it is

easy to see why it should have been preferred as the quantity to be divided.

However, since the ratio of the two commas is about 11:12, an excellent

approximation for equal temperament can be made by tempering the fifths

by 1/11 syntonic comma.
62

 This was done arithmetically by Sorge, with the

results shown in Table 78. The mean tempering of his fifths is 1/886, whence

the ratio of the fifth will be .667419962 ..., instead of .667419927 ... .

However, there are larger errors for most notes, since the temperament is not

built solely by fifths, and the temperament as a whole is comparable to

Neidhardt’s arithmetical division of the ditonic comma.



Table 77. Meckenheuser’s Division of Syntonic Comma

Table 78. Sorge’s Division of Syntonic Comma

The impression is likely to become quite strong as one reads the second

half of this chapter that equal temperament is nothing but a mass of figures

of astronomical size. Actually, as far as the ear is concerned, a wholly

satisfactory monochord in equal temperament (or any other tuning system)

would be obtained from the division of a string a meter long, marked off in

millimeters. Mersenne
63

 gave such a table, considering it more practicable

than the very complicated tables of Beaugrand and Gallé. It could easily

have been constructed from one of the more elaborate tables by rounding off

the numbers at three places. Oddly, many of Mersenne’s figures are one unit

too large. The correct monochord is shown in Table 79. It is instructive to

note that the deviation for this monochord is larger than for one of Marpurg’s

irregular tunings,
64

 and about the same as that for a couple of his other

tunings. Thus, to three places, Marpurg’s systems would have coincided with

equal temperament.



Table 79. Practical Equal Temperament, after Mersenne

In 1706 young Neidhardt, full of importance as the author of a new book

on temperament, Beste und leichteste Temperatur des Monochordi, held a

tuning contest with Sebastian Bach’s cousin, Johann Nikolaus Bach, in

Jena.
65

 Neidhardt tuned one set of pipes by a monochord he had computed

by making an arithmetical division of the syntonic comma. Therefore,

although he had worked out this division to six places, it was about as

accurate as the practical monochord given above. Bach tuned another set of

pipes entirely by ear, and won the contest handily, for a singer found it easier

to sing a chorale in B
b
 minor in Bach’s tuning than in Neidhardt’s.

Perhaps part of Neidhardt’s difficulty lay in the fact that it is difficult to

tune a pipe to a string. Many years later, Adlung wrote that this same Johann

Nikolaus Bach had what might be called a “monopipe”–a variable organ

pipe with a sliding cylinder upon which the numbers of the monochord were

inscribed.
66

 Because of the end correction for a pipe, this method is likely to

be faulty. However, forty years before the date of the historic tuning contest

in Jena, Otto Gibelius
67

 described and pictured just such a pipe, intended for

his meantone approximation discussed in Chapter III. He also gave an end

correction, amounting to 8/3 the width of the mouth of the pipe. In his

accurately drawn copperplate (see Figure F) the width of the mouth is 11

millimeters, making the end correction about 30 millimeters. Since the

internal depth is about 15 millimeters, his rule corresponds very closely to

our modern rule that the end correction for a rectangular pipe is twice the

internal depth. The Dayton Miller Collection now at the Library of Congress

contains several specimens of the “tuning pipe,” most of them fairly small.



Since the “tuning pipe” was not widely disseminated, organists tuning by

the aid of the monochord probably had no more success than Neidhardt had.

It is probable, however, that, like Johann Nikolaus–and Sebastian, too–the

organists did not bother with a monochord but relied upon their ears. Hence

the tuning rules given in the beginning of this chapter were of the greatest

possible importance in practice. Some of them seem so vague that they

would have needed to be supplemented by oral directions. But if we could be

sure that Mersenne’s rule that a tempered fifth should beat once per second

was to have been applied to the fifths in the vicinity of middle C, we would

have as accurate a rule for equal temperament as that given by Alexander

Ellis over two centuries later.

Fig. F. Gibelius’ Tuning Pipe Reproduced by courtesy of the Library of

Congress



Unfortunately, the more mathematically minded writers on equal

temperament have given the impression that extreme accuracy in figures is

the all-important thing in equal temperament, even if it is patent that such

accuracy cannot be obtained upon the longest feasible monochord. This is

why Sebastian Bach and many others did not care for equal temperament.

They were not opposed to the equal tuning itself, and their own tuning

results were undoubtedly comparable to the best tuning accomplished today–

upon the evidence of their compositions, as will be discussed in the final

chapter. But they needed a Mersenne to tell them that the complicated tables

could well have had half their digits chopped off before using, and that, after

all, a person who tunes accurately by beats gets results that the ear cannot

distinguish from the successive powers of the 12th root of 2.
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Chapter V. JUST INTONATION

The seeds of just intonation had been sown early in the Christian era, when

Didymus and Ptolemy presented monochords that contained pure fifths and

major thirds (see Chapter II). But they remained dormant during the Middle

Ages. Even after the seeds had sprouted near the beginning of the modern

era, the plants were to bear fruit only occasionally and haphazardly.

Enough of our metaphor. We shall consider in this chapter all 12-note

systems that contain some arrangement of pure fifths and major thirds. The

Pythagorean tuning may be thought of as the limiting form of just intonation,

since it has a great many pure fifths, but no pure major thirds. As the various

chromatic notes were added to the scale during the latter Middle Ages, they

were tuned by pure fifths or fourths to notes already present in the scale.

Finally, fifteenth century writers were describing the formation of a

complete chromatic monochord, using the Pythagorean intervals. Such a

writer was Hugo de Reutlingen,
1
 whose altered notes consisted of two sharps

and three flats. Since the more typical tuning has G
# 

instead of A
b
, that is

shown in Table 80. Of course the deviation would be the same as for Hugo’s

tuning. The ratio for each diatonic semitone is 256:243, and for the

chromatic semitone 2187:2048. Compare with these ratios the relative

simplicity of the ratios for Marpurg’s first tuning, the model form of just

intonation. (The lengths are very much simpler also.)

The first known European writer to break away from the Pythagorean

tuning for the tuning of the chromatic monochord was Bartolomeus Ramis

de Pareja.
2
 Ramis gave specific directions for tuning the monochord that

resulted in a system in which the six notes  are joined by perfect

fifths, as in the Pythagorean tuning, and the remaining six notes, D
–1

–C
#–1

,

also joined by fifths, lie a comma higher than the corresponding notes in the

Pythagorean tuning (see Table 81). Thus there are pure major thirds to only

the four notes B
b
-G.



Table 80. Pythagorean Tuning

Table 81. Ramis’ Monochord

Montucla,
3
 writing a “history of music,” gave string-lengths for a 17-

note tuning, in which twelve notes are the same as in Ramis. The other five

extend the scale to  and to . This is a wholly useless extension

because such enharmonic pairs as  and C
#-1

 differ by the schisma, 2

cents. Helmholtz was more astute in constructing his 24-note harmonium in

just intonation, in which the eight notes from C° through C
#°

 are joined by

fifths; the next eight, E
-1

 through E
#-1

, furnish major thirds to notes in the

first series; and the remaining eight, A
b+1

 through A
+1

, are considered (by

disregarding the schisma) as equivalent to the thirds above the notes in the

second series, i. e., G
#-2

- Gx
-2

.
4

Ramis’ monochord does not differ perceptibly from the Pythagorean

tuning. If he had substituted D
b°

 and all the other Pythagorean enharmonic

equivalents of the syntonic notes, he would have had a monochord from E
bb°

through G°, in Pythagorean tuning. His reason for making the new division

was solely to simplify the construction of the monochord. In his own words,

the Pythagorean tuning, as given by Boethius, is “useful and pleasing for

theorists, but tiresome for singers and irksome to the mind. But because we

have promised to satisfy both [singers and theorists], we shall simplify the



division of the monochord.” Later he expressed the same idea in these

words: “So therefore we have made all our divisions very easy, because the

fractions are common and are not difficult.”

Undoubtedly Ramis’ method is easier. But if he had desired to obtain the

equivalent of the Pythagorean tuning from A
b
 to C

#
, he would have

commenced his tuning with F
#
 instead of with C, having notes with zero

exponents from D
0
 to C

0
 and with -1 from G

#-1
 to Fx

-1
. On such a

monochord, however, as on the usual Pythagorean monochord, the eight

most common thirds would have been very sharp and the four useless thirds,

E-A
b
, B-E

b
, F

#
-B

b
, and C

#
-F, would have been pure. The monochord, as

Ramis actually tuned it, has as its four pure thirds, B
b
-D, F-A, C-E, and G-B.

Thus, although Ramis professed to be making his division of the octave

solely for the sake of simplicity, the accidental result was that several pure

triads were available in keys frequently used.

The bitter critics of Ramis in his own day failed to realize that his tuning

was just what he had described: a simplified equivalent of the Pythagorean

tuning — shifted, however, by six scale degrees to the flat side. To them, any

tampering with the old intervals was sacrilege. Many later writers, misled by

Ramis’ announced intentions, have stated, without examining his

monochord, that he had advocated temperament. As we have defined

temperament and as the word is usually understood, this is a serious

misconception. It has even been stated that Ramis advocated equal

temperament! Since Ramis’ book is accessible in a modern edition, there is

no longer any excuse for repeating such myths.

It must be said, somewhat sadly, that Ramis was not aware himself of the

peculiar properties of the monochord he had fathered. For example, he

explained that although E
b
 does not form a major third to B, D

#
 is not really

needed, for the minor triad B D F
#
 can be used in making a Phrygian

cadence on E. But his interval B
-1

-E
b°

 is slightly better than the Pythagorean

thirds, A
b°

-C
° 
and E

b°
-G

°
, that were acceptable to him!

Ramis must have been a good practical musician. Although his system

would not now be called a temperament, we might do well to take him at his

own evaluation and hail him as the first of modern tuning reformers.

Corroboration of Ramis’ tuning system is found in an interesting

anonymous German manuscript of the second half of the fifteenth century,

Pro clavichordiis faciendis, which Dupont
5
 ran across in the Erlangen



University Library. Starting with the note B, C is to be a just semitone

(16:15) higher, E a perfect fourth, G a just minor sixth (8:5), etc. A

succession of pure fifths on the flat side extends to G
b
, below which there is

a just major third (5:4), E
bb

, and the monochord is completed by adding B
bb

,

the fifth above E
bb

! The complete monochord is shown in Table 82.

The deviation for this tuning is almost precisely the same as for that of

Ramis, and it too contains many pure fifths and several pure thirds.

However, it has one peculiar feature as Dupont has presented it. In every

other tuning system we have examined, there has been an uninterrupted

succession of notes connected by fifths from the flattest to the sharpest. In

the Pythagorean and other regular tuning systems, such as the meantone, the

wolf fifth would be very flat or sharp, and in the irregular systems there

would be other divergences. But the note names persisted, usually from E
b
 to

G
#
 inclusive.

Table 82. The Erlangen Monochord

But in the Erlangen monochord there is no D or A, and the notes that

Dupont has given as their enharmonic equivalents, E
bb

 and B
bb

, are not in a

fifth-relation with any other notes in the monochord. Therefore it seems

obvious that the anonymous writer intended these notes to be D
°
 and A

°
,

each of which is higher by the schisma than E
bb+1

 and B
bb+1

 respectively.

Then the notes that are pure thirds above D
°
 and A

°
 will be F

#-1
 and C

#-1
,

notes that continue the fifth-series from B
-1

. It would then be immaterial

whether to call the semitone between G and A by the name A
b°

 or G
#-1

,

since either would complete the scale correctly. The original writer, by the

way, had not named the black keys, merely designating the semitone

between C and D as the first, between D and E as the second, between F and

G as the third, and between G and A as the fourth. In renaming some of the

black keys, therefore, we are not violating his intent, but rather confirming it.

The revised monochord, with schismatic alterations, is shown in Table 83.



These two pre-sixteenth-century tunings, the one in Spain and the other

in Germany, are sufficient indication of the trend of men’s thinking with

regard to consonant thirds. Lodovico Fogliano,
6
 half a century later than

Ramis, offered no apologies for using the 5:4 ratio for the major third. But

he was not content to present ordinary just intonation. Realizing that D
°

formed an imperfect fifth below A
-1

, he advocated D
-1

 as a consonant fifth.

This in turn led him to B° as a pure major third below D
-1

, as well as the

B
b+l

 as third below D
°
. But he said the “practical musicians” used only one

key each for D and B
b
, “neither right nor left, but the mean between both.”

“Such a mean D or B
b
, moreover, is nothing else than a point dividing the

proportion of the comma into two halves.”

Table 83. Erlangen Monochord, Revised

To obtain the mean proportional by geometry, Fogliano used the familiar

Euclidean construction, and appended a figure to show how the division was

to be made. This alteration of pure values, he said is “what they [the

practical musicians] call temperament.” Here is the germ of the meantone

temperament, which his countryman Aron had described in its complete

format about this same time.

For the sake of showing monochords in just intonation from the early

sixteenth century, there are set down here three monochords after Fogliano,

first with his one pair of D’s and B
b′

s, then with the second pair, and finally

with the mean D and B
b
. The first monochord (Table 84) is the best, having

two groups of four notes each with like exponents. The second monochord

(Table 85) would have had the same deviation as the first if it had had F
#-1

(in place of F
#-2

) as third above D
°
. (This is Marpurg’s first monochord,

Table 96.) The monochord with the two meantones (Table 86) ranks between

the first two. If Fogliano had formed three meantones, including one on F
#
,

the deviation would be slightly less than for the first monochord. The result

is given in Table 87.



Table 84.Fogliano’s Monochord, No. 1

Table 85. Fogliano’s Monochord, No. 2

Table 86. Fogliano’s Tempered Just Intonation



Table 87. Fogliano’s Tempered Just Intonation, Revised

Martin Agricola
7
 resembled Ramis in his tuning ideas. He gave a

monochord in which the eight diatonic notes, including B
b
, were joined by

pure fifths, as in the Pythagorean tuning. Then he directed that the interval

from B to the end of the string be divided into ten parts, with C 
#
 at the first

point of division, D
#
 at the second, and G

#
 at the fourth. Then F was to be a

pure fourth to C. Thus these black keys were given syntonic values, and the

whole monochord is made up of notes with 0 and -1 exponents (see Table

88). Ramis’ monochord is slightly better than Agricola’s, with a ratio of 6:6

for the number of fifths in each group, in place of 8:4.

Table 88. Agricola’s Monochord

It will be observed that the better of Fogliano’s untempered monochords

has more than twice the deviation of Ramis’. Thus it might be thought that

Fogliano had been unfortunate in his choice of intervals. Quite the contrary.

The most symmetric form of just intonation for the series E
b
-G

#
 has four

notes with the same exponent, followed by four more with exponents that

are one less. Of the remaining four notes, two would have +1 and two would

have -2 as exponents. This is precisely Fogliano’s second monochord, if we

should substitute F
#-1

 in it. Fogliano’s first monochord has the exponential



pattern 1,4,4,3, which is just as satisfactory. (That is, the tuning contains one

note with exponent +1, 4 with 0 and -1 exponents, and 3 with -2.) The

difficulty, therefore, is inherent in just intonation itself, as will be discussed

further a bit later.

Salomon de Caus
8
 was one of several mathematicians of the early

seventeenth century who were interested in just intonation. If we follow his

directions, we obtain the monochord shown in Table 89. Here there are three

groups of four notes each with the same exponent — the most symmetric

arrangement of all. The deviation is appreciably less than in Fogliano’s

arrangement.

Johannes Kepler
9
 gave some genuine tuning lore together with an

elaborate discussion of the harmony of the spheres. His two monochords in

just intonation (Tables 90 and 91) are identical except that the second has a

G
#
 in place of an A

b
. Since Kepler had five notes with zero exponents in

both monochords, the deviation for his systems is lower than most that have

been presented in this chapter.

Table 89. De Caus’s Monochord

Table 90. Kepler’s Monochord, No. 1

Although Marin Mersenne was a zealous advocate of equal temperament

in practice, he took pains to present literally dozens of tables in just



intonation. He repeated, among others, Kepler’s two monochords shown in

Tables 90 and 91, together with tables for keyboards with split keys. Four of

his monochords (Tables 92–95) are worth including here, as evidence of the

variety that is possible in a type of tuning that is ordinarily thought to be

fixed and uniform.
10

 None is as good as either of Kepler’s two.

Table 91. Kepler’s Monochord, No. 2

Table 92. Mersenne’s Spinet Tuning, No. 1



Table 93. Mersenne’s Spinet Tuning, No. 2

Table 94. Mersenne’s Lute Tuning, No. 1

Table 95. Mersenne’s Lute Tuning, No. 2



Table 96. Marpurg’s Monochord, No. 1

Table 97. Marpurg’s Monochord, No. 3

Table 98. Marpurg’s Monochord, No. 4

Note that Mersenne’s first spinet tuning (Table 92) has flats for its black

keys and the second tuning (Table 93) has sharps except for B
b
. The first

tuning is constructed exactly the same as de Caus’s tuning (Table 89), except

that it begins a major third lower, with G
b
 instead of B

b
. Mersenne’s first lute

tuning (Table 94) differs from his first spinet tuning (Table 92) at only one

pitch (B
b+1

 instead of B
b°

), but that is enough to increase its deviation to that

of the second spinet tuning (Table 93). The second lute tuning (Table 95),

although differing from the first spinet tuning (Table 92) at two places, has

the same deviation.



Friedrich Wilhelm Marpurg,
11

 who wrote brilliantly about temperament

140 years after Mersenne, included four monochords in just intonation. The

second of these was Kepler’s first, and need not be repeated here. The other

three are shown in Tables 96–98. In each of them the notes, according to

their exponents, are grouped into four classes. The first may be considered

the model form of just intonation, the ideal form of Fogliano’s second

monochord (Table 85).

Opelt has shown two monochords in just intonation from Rousseau’s

Dictionary
12

. The first (Table 99) was by Alexander Malcolm, whose linear

improvement upon just intonation is to be found in Chapter VII. This is the

same as Kepler’s second monochord (Table 91), transposed a fifth lower.

Rousseau tried to “improve” upon this tuning by substituting other just

pitches in place of D
b+1

, F
#-l

, and B
b°

, with very unsatisfactory results, since

his division of the major tone of 204 cents was into semitones of 70 and 134

cents! This monochord (Table 100) is the reverse of Marpurg’s fourth (Table

98), with semitones paired in contrary motion, when Rousseau’s A
b+1

 is

made to coincide with Marpurg’s G
#-2

.

Table 99. Malcolm’s Monochord

Table 100. Rousseau’s Monochord



Table 101. Euler’s Monochord

Table 102. Montvallon’s Monochord

Table 103. Romieu’s Monochord

Euler’s monochord ran entirely to sharps.
13

 However, it has the same

symmetric grouping of its notes as de Caus’s (Table 89), only transposed a

fifth higher.

Montvallon’s monochord, given by Romieu,
14

 follows a more familiar

order in the selection of notes than Euler’s did (see Table 102).

Romieu himself contributed an example (Table 103) of a “systême

juste.”
15

 It has a somewhat more complicated pattern than Euler’s (Table

101), but the same deviation.

Theory of Just Intonation

In the foregoing pages there have been presented more than twenty

different monochords in authentic just intonation, i. e., with pure fifths and

major thirds. Their mean deviations have varied from 10.0 to 25.0. And yet

each has a right to be called just intonation! This great divergence can be

explained by mathematics, Let us consider first a monochord in the

Pythagorean tuning. Its mean deviation is 11.7. A Pythagorean chromatic



semitone, as C
°
-C

#°
, is 114 cents; the diatonic semitone, as C

#°
-D

°
, 90.

Hence the deviation for the pair of semitones is 24 cents. When the just

semitones are used, the chromatic semitone, C
°
-C

#-1
, is 92 cents; the

diatonic, C
#-1

-D
°
, 112. The deviation for the pair of just semitones is 20

cents, or 4 cents less than for the pair of Pythagorean semitones. Therefore

the substitution of each just note reduces the deviation by 4/12 or .3 cent.

But the sixth note to be altered around the circle of fifths is adjacent to

the first note to have been altered, and therefore the total deviation is

unchanged. The same is true for the seventh note. The eighth note lies

between two notes, each sharper by the syntonic comma. Therefore, when it

too is raised, the syntonic semitones already present are changed to

Pythagorean semitones, and the deviation is increased by .3 cent. This

process continues until all twelve notes have been raised by a comma, and

the monochord is again in Pythagorean tuning. If we call the number of

notes with -1 exponent n
1
, and with 0 exponent n

2
, the following formula

gives the mean deviation:

The minimum deviation of 10.0 cents occurs when (n
1
,n

2
) = (5,7), (6,6), or

(7,5). Thus Ramis’ monochord (Table 81) with 6,6 is one of the three best

possible.

When there are notes with three different exponents, the change of a

single note may cause a greater change in the deviation than was possible

with two exponents only. Suppose a monochord contains the notes C
°
 C

#-1

D
-1

, the total deviation being 18 cents for the two semitones. When C
#-2

 is

used, the deviation becomes 42 cents, an increase of 24 cents. But if the

notes had originally been C
°
 C

#-1
 D

°
, the change to C

#-2
 would increase the

deviation from 20 cents to 64 cents, that is, by 44 cents, or two commas.

Again, the deviation of the two semitones C
#-1

 D
°
 E

b+1
 is 24 cents; with D

-1

it is 44 cents, an increase of 20 cents.

Thus when a note is changed by a comma, the change in the mean

deviation may be 1/3 (as before) or 6/3 or 11/3 or 5/3. A much more

complicated formula, therefore, is needed to express the deviation with the



three exponents. If we call the number of notes with -1 exponent n
1
, with 0,

n
2
, and with +1, n

3
, the mean deviation is given by the formula:

7(k
2
 – k 

1
) + 5(k

4
 – k

3
), where k

1
 = the larger of n

2
 and (7 – n

1
), k

2
 = the

smaller of 7 and (12 – n
1
), k

3
 = the larger of n

2
 and (5 – n

1
), and k

4
 = the

smaller of 5 and (12 – n
1
). The terms containing the k’s are zero whenever k

2

 k
1
 and k

4
  k

3

Let us now compute the deviations for two of the tunings shown on

previous pages. Mersenne’s first spinet tuning (Table 92) has for its

(n
1
,n

2
,n

3
) the numbers (4,4,4). Here k

1
 = n

2
 = 4, k

2
 = 7, k

3
 = n

2
 = 4, k

4
 = 5.

3 D
3
 = 23 + 2 + 2 + 0 + 0 + 7 × 3 + 5 × l = 53. D

3 
= 17.7. For Mersenne’s

second spinet (Table 93) or first lute tuning (Table 94) the exponential

numbers are (4,3,5).

3 D
3
 = 23 + 2 + 1 + 0 + 0 + 7 × 4 + 5 × 2 + 64. D

3
 = 21.3.

When there are four different exponents, there is a very analogous

formula for the deviation:

where k
1
 = the larger of n

3
 and (7 – n

1
 – n

2
), k

2
 = the smaller of 7 and (12 –

n
1
 – n

2
), k

3
 = the larger of n

3
 and (5 – n

1
 – n

2
), k

4
 = the smaller of 5 and (12

– n
1
 – n

2
); L

2
 = the larger of n

2
 and (7 – n

1
), L

2
 = the smaller of 7 and (12 –

n
1
), L

3
 = the larger of n

2
 and (5 – n

1
), and L

4
 = the smaller of 5 and (12 –

n
1
). The terms containing the k’s and L’s are zero whenever k

2
  k

1
, k

4
 

k
3
, L

2
  L

1
, and L

4
  L

3
.

As examples, let us compute the deviation for two of Marpurg’s tunings.

His first tuning (Table 96) is the model form of just intonation, with (2,4,4,2)



for its (n
1
, n

2
, n

3
 n

4
). Here k

1
 = 4, k

2
 = 6, k

3
 = 4, k

4
 = 5, L

1
 = 5, L

2
 = 7, L

3
 =

4, and L
4
 = 5. Hence 3 D

4
= 23 – 2 + 0 + 4 + 1 + 0 + 7 × 2 + 5 × 1 + 7 × 2 +

5 × 1 = 64. D
4
 = 21.3. Marpurg’s third tuning (Table 97) has for its

exponents (2,3,6,1). Here k
2
 = 6, k

3
 = 7, k

4
 = 6, k

4
 = 5, L

1
 = 5, L

2
 = 7, L

3
 =

4, L
4
 = 5. The deviation: 3 D

4
 =23 – 2 + 1 + 5 + 0 + 0 + 7 × 1 + 0 + 7 × 2 +

5 × 2 = 58. D
4
= 19.3.

With all these complex mathematical formulas before us, we are likely to

forget that we are ostensibly studying a form of tuning that to many people is

a sort of ideal system. It is not likely that any sane person would advocate so

perverted a tuning as that represented by (5,1,1,5), with a mean deviation of

43.3 cents. But the systems that have been shown on the previous pages have

all been advocated by various writers, and they show great variety in their

construction and almost as great a variety in their deviations, ranging from

the 10.0 of Ramis to the 25.0 of Fogliano’s second or Rousseau’s or

Marpurg’s fourth. The model form, Marpurg’s first, with a deviation of 21.3,

comes nearer the maximum than the minimum. We shall speak again of just

intonation in the final chapter. Let us close this chapter with a double

paradox: there is no such thing as just intonation, but, rather, many different

just intonations; of these, the best is that which comes closest to the

Pythagorean tuning.
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Chapter VI. MULTIPLE DIVISION

If a keyboard instrument is not in equal temperament, its intonation can be

improved by a judicious increase in the number of notes in the octave. The

first reference to split keys came from Italy, where before 1484 the organ of

St. Martin’s at Lucca had separate keys for E
b
 and D

#
 and also for G

#
 and

A
b
.
1
 At this same time, Ramis

2
 noted that split keys were being used in

Spain, but objected to having separate keys for A
b
 and G

#
 and for F

#
 and G

b
,

on the ground that this would be mixing the chromatic with the diatonic

genus. From Germany came further evidence of the divided keyboard from

Arnold Schlick,
3
 who referred to an organ constructed at the turn of the

sixteenth century “ that had double semitones on manual and pedal . . .

which were called half semitones or ‘ignoten.’”

There are frequent references to multiple division during the sixteenth

and seventeenth centuries, chiefly by Italian theorists. Jean Rousseau
4
 in

1687 deplored the fact that the French clavecins did not have the “doubles

feintes” common in Italy, and consequently had “mauvais effets dans les

Tons transposez.” But the split keys must have been very common in

Germany during the latter part of the seventeenth and beginning of the

eighteenth centuries, if we may judge by the copious references to

“subsemitonia” by Werckmeister and his successors. Buttstett, it is true, said

in 1733 that the sub-and supersemitonia were “mehr curieux als

practicabel.”
5
 But six years later, in Holland, van Blankenburg was to show

“’t Gesnede Clavier” with three extra keys, as well as an “Archicymbalam”

with eighteen notes in the octave.
6

Handel played on English organs with split keys.
7
 Father Smith’s Temple

Church organ in London, constructed in 1682–83, had the same pairs of

divided keys as the Lucca organ, G
#
-A

b
 and D

#
-E

b
, and so did Durham

Cathedral. The organ of the Foundling Hospital (1759) had an ingenious

mechanism by which D
b
 and A

b
 could be substituted for C

#
 and D

#
, or D

#

and A
#
 for E

b
 and B

b
, thus increasing the compass to sixteen notes, without

increasing the number of keys.



Many of the sources said nothing about the tuning of the extra notes, and

we can freely assume that whatever variety of meantone temperament was

used for the twelve regular notes was extended both clockwise and

counterclockwise around the circle (or, rather, spiral) of fifths. More

interesting to us are the systems that represent just intonation, as extended to

the enharmonic scale. We have already noted that Fogliano (1529) had felt

the need for two D’s and two B’s, to ensure just triads, but was willing to

settle for a mean D and a mean B
b
’s. But van Blankenburg, mentioned

above, included both pairs of notes in his Archiecymbalam, and so did

almost all of the men whose systems will be described below.

The “enharmonic genus” of Salinas
8
 was one of the earliest and best of

these systems. Although it contained twenty-four notes, it had nothing in

common with a real enharmonic scale composed of quarter tones. It is just

intonation extended to seven sharps and six flats. In tabular form it would

appear as shown in Table 104.

Observe that all the notes in the right diagonal are duplicated on the left,

a comma lower. Thus it is possible to play all major triads from G
b
 through

G
#
, and all minor triads from E

b
 through E

#
. Mersenne’s “parfait diapason”

9

is based upon Salinas’ system, with the addition of seven more notes, or

thirty-one in all (see Figure G). These would be joined to Table 104 on the

left side, as shown in Table 105.

Table 104. Salinas’ Enharmonic Genus



Fig. G. Mersenne’s Keyboard with Thirty-One Notes in the Octave (From

Mersenne’s Harmonie universelle) Reproduced by courtesy of the Library of

Congress

Table 105. Mersenne’s Addition to Salinas’ System

This is not a particularly clever addition. Note that Mersenne did not

have a C°. Furthermore, for the sake of symmetry, there should have been

D
b+1

 in the lowest line of Mersenne’s additional notes, B
bb+2

, F
b+2

 and C
b+2

in the line below it, and C
#–2

, G
#–2

,andD
#–2

 in the line above the highest line,

or a total of thirty-nine notes.

The praiseworthy thing about Mersenne’s addition is that it recognized

the need for having more pairs of notes differing by a comma. Imperfect as

his scheme was, it would be much more useful than the 34-note keyboard of

Galeazzo Sabbatini, given by Kircher.
10

 There were, as usual with Kircher,

many errors in the figures, and an erratic manner of naming the notes. The

actual notes of Sabbatini’s keyboard are shown in Table 106.



Table 106. Sabbatini’s Keyboard

Except for the three notes in brackets which have been supplied, this is a

beautifully symmetric scheme. But how different from that of Salinas! Here

there are no notes differing by the syntonic comma, with the result that no

major triad based on a note in the diagonal on the right will have a pure fifth,

and there will be a similar series of defective minor triads. With this

intonation it is not even possible to supply a missing note by its enharmonic

equivalent, because no pair of notes differs by the ditonic comma either. The

most characteristic small interval in it is the great diesis of 41 cents, as

between A
# – 2

 and B
b+1

, whereas A
#–1

 needed as the fifth of the D
#
 triad,

lies almost half way between these two notes, 22 cents higher than A
# – 2

 and

20 cents lower than B
b+1

. Other small intervals of little use contain 28, 14,

and 8 cents. This, then, is an example of just intonation carried to an absurd

end.

Doni’s three-manual organ keyboard
11

 (abacus Triharmonicus) was more

elaborate than any system previously described, with sixty keys in the

octave, but with only thirty-nine distinct pitches. The lowest keyboard was

the Dorian, then the Phrygian, and finally the Lydian. The arrangement of

the notes on each keyboard was identical, and the keyboards were tuned a

major third apart, so that the Dorian E, the Phrygian C, and the Lydian A
b

were the same pitch. The tuning was largely just, as can be seen from Table

107, which represents seventeen of the twenty notes on one keyboard.



Table 107. Doni’s Keyboard

This arrangement is somewhat lacking in symmetry, and the additional

three notes, which were real quarter tones, were of no use except to illustrate

the scales of the Greeks, this being one of the uses of the organ. The

enharmonic notes were formed, as Didymus formed his, by an arithmetical

division of the syntonic semitone, 16:15, into 32:31 and 31:30 quarter

tones.
12

The nineteenth century was particularly rife with proposals to increase

greatly the number of notes in the octave. Many of the instruments upon

which the inventors practiced their ingenuity were harmoniums, intended for

experimental purposes only. One of the more modest was Helmholtz’s,

already mentioned in Chapter V, with only twenty-four notes in the octave.
13

it followed a suggestion by Euler in 1739 that each manual be in the

Pythagorean tuning, the one manual a comma higher than the other. General

Thompson followed Doni’s lead by having three manuals on his Enharmonic

Organ, with forty different pitches in the octave. Henry Poole’s Euharmonic

Organ had only two black keys on the keyboard; but through a series of

eleven pedals all the notes could be transposed into five sharp and five flat

keys, giving fifty distinct pitches in the octave.

Liston’s organ also relied upon pedals to obtain a great variety of notes

with the minimum number of keys.
14

 With only twelve keys to the octave,

tuned in just intonation, he was able by means of six pedals to add their

enharmonic equivalents, thus having twenty-four notes in his normal scale.

These are shown in Table 108. Then by three acute pedals all these notes

could be raised in pitch by a comma. Two grave pedals similarly lowered

nine or eleven of the normal notes by a comma. Thus Liston had a total of

fifty-nine pitches available.

Of Liston’s fifty-nine notes, there were ten pairs, such as Db°-C
#–2

,

which differed by the schisma, 2 cents. Furthermore, Cx
–3

 and E
#–3

 differed

by only six cents from D
b+1

 and F
b+3

 respectively, and could be considered



equivalent pairs also. Thus there were essentially only 47 separate pitches.

These included four larger intervals: between C
+1

 and C
#–2

 and between Cx
–

4
 and D

–1
 there were two commas; between E

#–1
 and F

#–2
 and between A

#–1

and B
–2

 there were three. If these larger intervals had been divided, the

octave would have contained 43 + 2 × 2 + 2 × 3 = 53 commas, which is the

number one might have anticipated. These “commas” are not all the same

size. The ditonic comma does not occur at all except as the sum of the

syntonic comma and the schisma. The syntonic comma is, as is evident from

the scheme of pedals, the most common interval. But intervals of 20 cents,

as D
#–2

 -E
b°

, and of 26 cents, as G
+l

 -G
#–3

, also occur.

Table 108. Liston’s Enharmonic Organ

More ambitious was Steiner’s system.
15

 For the key of C he used 12

notes in just intonation, symmetrically arranged in three groups of 4 notes

each. But these could be transposed mechanically into any of 12 different

keys, the keynotes being tuned by perfect fifths. Thus there were 144 notes,

but only 45 distinct pitches. Shohe Tanaka adopted Steiner’s idea of having

12 keynotes in Pythagorean tuning, for mechanical transposition. But he

extended his keyboard to 26 different notes, as shown in Table 109. Of the

312 notes to the octave of Tanaka’s “Transponir-Harmonium” or

“Enharmonium,” there were only 70 unduplicated pitches, no more than on

an organ described by Ellis which had a total of 14 × 11 or 154 notes to the

octave, with 70 separate pitches.



Table 109. Tanaka’s Enharmonium

Equal Divisions

With Tanaka’s Enharmonium we may safely drop the subject of just

intonation extended. The theory is simple enough: provide at least four sets

of notes, each set being in Pythagorean tuning and forming just major thirds

with the notes in another set; construct a keyboard upon which these notes

may be played with the minimum of inconvenience. Only in the design of

the keyboards did the inventors show their ingenuity, an ingenuity that might

better have been devoted to something more practical.

The other direction in which multiple division developed had far greater

possibilities. This was the division of the octave into more than twelve

acoustically equal parts.
16

 Any regular system of tuning – a system

constructed on a fixed value of the fifth – will eventually reach a point where

its “comma,” the error for the enharmonic equivalent of the keynote, is small

enough to be disregarded. Thus we have closed systems that agree more or

less closely with the various types of meantone temperament, etc.

If the Pythagorean tuning is extended to 17 notes, an interval of 66 cents

is formed –a doubly diminished third, as Ax-C. Divided among 17 notes, the

deficit is about 4 cents, the amount by which each fifth must be raised to

have a closed system. The fifth (now taken as 10/17 octave) contains 706

cents, being raised by about the same amount that it is lowered in the

Silbermann variety of meantone temperament. The major third (6/17 octave)

contains 423 cents, being more than twice as sharp as it is in equal

temperament, and the minor third is correspondingly very flat. If we take 5

parts for the third, this becomes a neutral third of 353 cents, such as the

thirds found in some scales of the Orient.

In the 17-division, the tone is composed of 3 equal parts, of Which the

diatonic semitone comprises 1 part and the chromatic semitone 2 parts. Since

the diatonic semitone, 70 cents, is even smaller than in the Pythagorean



tuning, this system is well adapted to melody. It is, of course, wholly

unacceptable for harmony because of its outsize thirds. It is notated with 5

sharps and 5 flats only, D
#
 and A

#
 being considered the equivalent of and C

b
,

and and D
b
 the equivalent of E

#
 and B

#
. The 17-division is the well-known

Arabian scale of third-tones.
17

A much more popular system is the 19-division. It arises in much the

same way as the 17-division, except that, as in just intonation, the diatonic

semitone is considered the larger, with 2 parts to 1 for the chromatic

semitone. Since the octave contains 5 tones and 2 semitones, it will have 5 ×

3 + 2 × 2 = 19 parts. The history of the 19-division goes back to the middle

of the sixteenth century, when Zarlino and Salinas discussed, among types of

meantone tuning, one in which the fifth was tempered by 1/3 comma. Like

the other two types (1/4 and 2/7 comma) it was intended for a cembalo with

19 notes to the octave.
18

 Salinas’ claim as inventor has not been disputed. He

was rather apologetic concerning it, because of its greater deviation from

pure intervals than the other two. He apparently did not realize that this

could not be distinguished from an equal division into 19 parts, and that

thus, as a closed system, it possessed a great advantage. It can be notated

with 6 sharps and 6 flats, being the equivalent of B
#
 and E

#
 of F

b

We have plenty of evidence from past centuries of cembali with 19 notes

in the octave, for which this division would have been the ideal tuning.

Zarlino
19

 described such a cembalo that Master Domenico Pesarese had

made for him. Elsasz is frequently but erroneously called the inventor of the

19-note cembalo, because his instrument is described in Praetorius’

Syntagma.

After having been neglected during the nineteenth century for the more

elaborate systems such as have been described in the previous section of this

chapter, the 19-division was revived in the second quarter of the twentieth

century. It has had eloquent contemporary advocates in Ariel, Kornerup, and

Yasser. Of all these enthusiasts, Yasser has gone to the greatest pains to show

the construction of the system and its possibilities.
20

 He differs radically

from its other adherents, who have proposed it partly for the sake of

differentiating enharmonic pairs of notes, but chiefly because it$ triads are

more consonant than those of equal temperament. Yasser holds that the

harmony of Scriabin and the tone-rows of Schonberg show an intuitive

striving toward the 19-division, since a scale as used should contain unequal

divisions, being a selection from an equal division of more parts. Thus the



Siamese scale of 7 equal parts is suitable for pentatonic melodies; the

ordinary 12-note chromatic scale, for heptatonic melodies; and the 19-

division for melodies built upon the 12-note scale. Yasser’s attempt to give a

historical foundation is so defective that his case emerges considerably

weaker than if he had presented his system simply from the speculative point

of view.

There does not seem to be much chance of the 19-division coming into

use in our day. Its thirds and fifths have been discussed in Chapter III. To

modern ears, accustomed to the sharp major thirds of equal temperament, the

thirds of 379 cents, 1/3 comma flat, would sound insipid in the extreme.

There would seem to be a better chance for the acceptance of a system that

does not differ so markedly in its intervals from our own.

The 22-division belongs next in our study of equal divisions. It was not

discussed by Sauveur, Romieu, or Drobisch. In fact, Bosanquet did not even

mention it in his comprehensive book on temperament, although Opelt had

treated it carefully twenty-five years before.
21

 But the following year

Bosanquet contributed an article to the Royal Society, “On the Hindoo

Division of the Octave.” In it he referred to S. M. Tagore’s Hindu Music and

an article in Fétis’ Histoire générale. There the Hindoo scale was said to

consist of 22 small intervals called “S’rutis.” If these are considered equal, a

new system arises with “practically perfect” major thirds (actually,being

381.5 cents, theyare almost 5 cents flat) and very sharp fifths (709 cents, or 7

cents sharp). Riemann later was to include the 22-division in his discussion

of various systems, and it is frequently mentioned today. Unfortunately, the

Hindoo theory does not make the S’rutis all equal, but that does not prevent

the division from finding an honored place among these others.

The thirds of the 22-division are better than those of the 19-division, and

its fifths are no worse. However, it is not so good a system for the

performance of European music. The difficulty lies in the formation of the

major third. The fifth is taken as 13/22 octave, whence the tone has 4 parts

and the ditone, 8. But 8/22 octave is 436 cents, an impossibly high value.

Hence the major third must be only 7 parts, or 381.5 cents. This means that

D
#
 is taken as the major third above C, and F

b
 (or Cx) as the third above B.

This is an awkward feature, but one that we shall run into with most of these

equal divisions. It is not ordinarily possible to retain our ideas of tone

relations while making a division of the octave that will provide good fifths

and thirds.



The 24-division has the same good fifths and sharp thirds as the 12-

division, and the deviations for the 29-division are very similar, but with

plus and minus signs reversed. Both the 25- and the 28-divisions have good

thirds and quite poor fifths. So none of these four divisions is of great

import. The 24-division does have its place, as a possible realization of

Aristoxenus’ theory that the enharmonic diesis is a true quarter tone, the half

of the equal semitone. Kircher
22

 presented it as such, together with a

geometrical method of obtaining the quarter tones on the monochord.

Rossi
23

 later gave the stringlengths for equal quarter tones, and Neidhardt

offered a similar table many years afterwards.
24

 The 29-division has its place

as a member in the series that contains the 17-division, but that fact does not

improve the quality of its thirds.

The next system of importance is the 31-division. It is the most ancient

of them all and well worth the attention that has been given to it. Observe

that 31 logically follows 19 in the Fibonacci series: 5, 7, 12, 19, 31, 50, 81, .

. . . This system was first described by Vicentino
25

 in 1555, as the method of

tuning his Archicembalo. In theory this was constructed in an attempt to

reconcile the ideas of the ancient Greeks with those of sixteenth century

practice. In reality it was a clever method for extending the usual meantone

temperament of 1/4 comma until it formed practically a closed system.

The Archicembalo contained six ranks of keys, of which the first two

represented the ordinary harpsichord keyboard with 7 natural keys, 3 sharps,

and 2 flats. The third “order” contained 4 more sharps and 3 flats. The fourth

order continued the flat succession with 7 more keys, and the fifth added 5

more sharps. (The sixth order is in tune with the first.) Thus all the notes

would lie in a succession of fifths from to Ax, and the circle would be

completed by taking Ex as equivalent to G
bb

 or C
bb

 to Ax. (Vicentino

himself gave a second tuning to the fourth order that showed that he

considered the above to be equivalent pitches.)

Vicentino specified that the first three orders of the Archicembalo should

be tuned “justly with the temperament of the flattened fifth, according to the

usage and tuning common to all the keyboard instruments, as organs,

cembali, clavichords, and the like.” But the other three orders may be tuned

“with the perfect fifth” to the first three orders. For example, the G of the

fourth order (that is, A
bb

) is to be a perfect fifth above the C of the first

order. It must be admitted that this part of Vicentino’s scheme does not seem

to make sense.



If we ignore this puzzling doctrine of the perfect fifth, we have a logical

system, formed by a complete sequence of 31 tempered fifths. The amount

of tempering is not specified, but was to be the same as that of common

practice. The common practice was the ordinary meantone temperament, in

which major thirds are perfect. This is undoubtedly what Vicentino used.

By logarithms Christian Huyghens
26

 showed that the 31-division does

not differ perceptibly from the 1/4-comma temperament. More specifically

he said: “The fifth of our division is no more than 1/110 comma higher than

the tempered fifths, which difference is entirely imperceptible; but which

would render that consonance so much the more perfect.” Riemann
27

 was

confused by this remark, not realizing that Huyghens meant that this fifth

was 1/110 comma higher than afifth tempered by 1/4 comma. The difference

between the logarithm of the meantone fifth, .174725011, and that of 2
18/3

 S

.1757916100, is .0000491089, which is quite close to 1/110 of the logarithm

of the syntonic comma, .0053951317.

Tanaka
28

 and Riemann have described Gonzaga’s harpsichord in the

Museo Civico in Bologna, dated 1606. Essentially the same as Vicentino’s

instrument, its arrangement of notes is somewhat different, the second row,

for example, consisting solely of sharped notes, instead of 3 sharps and 2

flats. Father Scipione Stella’s eight-manual harpsichord also resembled

Vicentino’s, but had a couple of manuals duplicated to facilitate the

execution.
29

An improved version of Vicentino’s Archicembalowas Colonna’s 6-

manual Sambuca Lincea.
30

 The difficulty with Vicentino’s system was the

unsystematic arrangement of the second and third orders. Both C
#
 and E

b
,

for example, were in the second order, while D
b
 and D

#
 were in the third. If

the instrument was to be considered merely an extension of an ordinary

cembalo with twelve notes in the octave, such an arrangement was no doubt

good enough. But, for its complete possibilities to be available, any such

instrument needs what Bosanquet called a “generalized keyboard.”

Colonna came close to supplying this lack. Each of his orders contained

seven notes, and was 1/5 tone above the preceding order. In our notation, the

notes between C in the first order and D in the sixth would be D
bb

, C
#
, D

b

and Cx. Colonna’s notationfor them was Cx, C
#
, D

b
, and , respectively.

This is very clumsy; but his idea of the division was entirely correct, as can

be seen from the scales he listed as examples of the capabilities of the



instrument. He included such remote major keys as C
b
, A

#
, E

bb
, and G

#
 – all

of course with his peculiar notation.

The germ of the 31-division lay in the contention of Marchettus of Padua

that a tone could be divided into five parts. After Vicentino, Salinas and Mer

senne discussed the system without realizing its value. Hizler
31

 referred to a

31-note octave, but used in practice only 13 notes, having both a D
#
 and an

E
b
. Rossi

32
 anticipated Huyghens in obtaining by logarithms the string-

lengths for the 31-division, but did not call attention to the fact that its

pitches were so close to those of the meantone temperament which he also

presented. (With A at 41472, his meantone E was 27734, the 31-division E,

27730.) Gallimard
33

 was to follow Huyghen’s lead in comparing the

logarithms of the two temperaments. Van Blankenburg
34

 was to use the 31-

division as a sort of tuning measure, much as Sauveur used the 43-division

and Mercator the 53-division. According to van Blankenburg, Neidhardt’s

equal temperament was full of “young wolves, each 1/3 of the large wolf,”

because the major third of equal temperament contains 10 1/3 parts instead

of the 10 parts of the 31-division.

The string-lengths for the 31-division were also given by Ambrose

Warren,
35

 for the octave 8000.0 to 4000.0. Warren showed how this

temperament could be applied to the fingerboard of the violin, for a string 13

inches long.

For obtaining the 31-division mechanically, Rossi recommended the

mesolabium. Salinas, Zarlino, and Philander have stated that the mesolabium

could be used for finding an unlimited number of geometrical means

between two lines, provided the number of parallelograms was increased

correspondingly. Perhaps so, but Rossi
36

 was undoubtedly correct in saying

that “in dividing the octave into 31 parts you will experience greater

difficulty because of the great number of rectangles,” and Mersenne
37

 said

flatly that it “is of no use except for finding two means between two given

lines.”

Romieu
38

 included the 31-division among those for which he had

obtained correspondences, calling it a temperament of 2/9 comma. This is

not very close, for 1/4 – 1/110 = 53/220. (Drobisch’s 74-division is the real

2/9-comma temperament.) It is possible that writers before Romieu had this

tuning in mind when they wrote about the 2/9-comma temperament.

Printz,
39

 for example, spoke of a “still earlier” temperament that took 2/9



comma from each fifth. Earlier, perhaps, than Zarlino’s 2/7 comma, which

he had been discussing previously. But Lemme Rossi, who gave a detailed

treatment to the 2/9-comma tuning, did not identify it with the 31-division.

The 34-division is a positive system, like the 22-division. That is, its fifth

of 706 cents is larger than the perfect fifth, being the same size as for the 17-

division. Its third is about 2 cents sharp. Thus it provides slightly greater

consonance than the 31-division. But, like the 22-division, it has remained

one of the stepchildren of multiple division, largely because it is in a series

for which ordinary notation cannot be used. There is a surprising mention of

the 34-division by Cyriac Schneegass in 1591 (see Chapter III), but his own

monochord came closer to the 2/9-comma division. Bosanquet had indicated

the relation between the 22- and 34-divisions, and had praised the 56- and

87-divisions also as similar systems. Opelt, too, has included it in his fairly

short list.

The 36-division has little to recommend it, although its string-lengths

were worked out by Berlin,
40

 and Appun and Oettingen both found it worth

describing.
41

The 41-division has excellent fifths (702.4 cents), but thirds (380.5) that

are almost six cents flat, being in this latter respect inferior to the 31- and 34-

divisions. It occurs in a worthy series: 12, 17, 29, 41, 53,.... This system was

not singled out by any of the earlier writers, but received considerable

attention from such nineteenth century theorists as Delezenne, Drobisch, and

Bosanquet. Paul von Janko
42

 set himself the task of ascertaining the best

system between 12 and 53 divisions, and chose the 41-division. Rather

naïvely, he concluded he had discovered this system, since Riemann had not

mentioned it!

The 43-division is associated with the name of Sauveur,
43

 who used its

intervals (Merides) as a unit of musical measure. The Merides were divided

into seven parts called Eptamerides. For more subtle distinctions, Sauveur

suggested using Decamerides, 10 of which comprised one Eptameride. But

he did not use the Decamerides in practice. Thus there were 43 × 7 = 301

Eptamerides in the octave, or 3010 Decamerides. Since .30103 is the

common logarithm of 2, it is possible to convert directly from logarithms to

Eptamerides by dropping the decimal point and all but the first three digits

of the logarithm.

The 43-division is a closed system approximating the 1/5- comma

variety of meantone temperament, which, as we saw in Chapter III, had been



mentioned by Verheijen and Rossi. Its thirds and fifths have an equal and

opposite error of slightly over four cents, thus making it somewhat inferior

to the 34-division, although the equality of the error may have some weight

in ranking the two systems. Since 43 is a number occurring in a useful series

for multiple division – 12, 19, 31, 43, 55,... – this division was treated by

Romieu, Opelt, Drobisch, and Bosanquet.

The 50-division need not detain us long. It may be thought of as an

octave composed of ditonic commas, since 1200 ÷ 24 = 50. It was advocated

by Henfling in 1710 and criticized by Sauveur
44

 the following year. A

century later Opelt was to mention it. Bosanquet has included it as a member

of the series: 12, 19, 31, 50, . . . . This division shows no improvement over

the 31-division. Its fifths have about the same value as those of the latter,

and its thirds are flatter than the latter’s were sharp. Kornerup
45

 has waxed

lyrical in its praise, as a closed system corresponding to Zarlino’s 2/7-

comma meantone temperament. He showed that the value for Zarlino’s

chromatic semitone (70.6724 cents) came very close to the mean of the

chromatic semitones for the 19- and 31-divisions (70.2886), and might have

added that this similarity extends throughout, since all three are regular

systems. He found that the greatest deviation of the 2/7-comma tuning from

the 50-division is a little over three cents, and is much less for most notes.

We shall have more to say later about the special part of Kornerup’s theory

that has caused him to overvalue this system.

The most important system after the 31- is the 53-division. In theory it is

also the most ancient. According to Boethius,
46

 Pythagoras’ disciple

Philolaus held that, since the tone is divisible into minor semitones and a

comma, and since the semitone is divisible into two diaschismata, the tone is

then divisible into four diaschismata plus a comma. If, now, the diaschisma

is taken as two commas exactly, the tone is divided into nine commas. (Note

what was said about the ditonic comma in connection with the 50-division.)

This dictum about the number of commas in a tone was one of the most

persistent parts of the Pythagorean system. Writers in the early sixteenth

century sometimes mentioned the fact that there are nine commas in a tone,

without giving any other tuning lore. They probably included, however, the

statement that the diatonic semitone contains four commas, the chromatic

semitone, five. Amusingly enough, after just intonation became the ideal,

writers continued to talkabout commas; butnow itwasthe chromatic semitone

that contained four commas, the diatonic semitone, five.



Since the Pythagorean diatonic semitone contains 90 cents, and the

chromatic, 114, their ratio is 3 3/4:4 3/4, or approximately 4:5. Similarly, if

we choose the larger just chromatic semitone of 92 cents and the smaller just

diatonic semitone of 112 cents, the ratio will be 4 1/2:5 1/2, or, again, 4:5.

But the ratio might be taken as 5:6, giving rise to the 67-division discussed

below. The comma, taken as 1/9 Pythagorean tone, would have a mean value

of 22.7 cents, lying between the syntonic and the ditonic commas.

If there are 9 commas in a tone, the octave contains 5 × 9 + 2 × 4 = 53

commas – provided we are thinking in terms of the Pythagorean tuning. If

we are thinking in terms of just intonation, with a large diatonic semitone,

there will be 5 × 9 + 2 × 5 = 55 commas. Thus the 55-division has received

attention also.

There are several advantages to the 53-division. Its fifths are practically

perfect (.1 cent flat), so that it is unnecessary to use a monochord for tuning.

Its thirds are very slightly flat (1.4 cents). However, since it is a positive

system, with fifths sharper than those of equal temperament, the pure major

third above C is F
b
, with 17 parts, whereas C-E represents the Pythagorean

third, with 18 parts. This would be confusing to the performer.

After the time of the Greeks, the history of the 53-division takes us to

China, where the Pythagorean tuning had been known for many centuries,

probably since the invasion of Alexander the Great. In 1713 it was

confirmed as the official scale, however widely instrumental tunings may

have differed from it in practice.

One of the most remarkable of the early Chinese theorists was King

Fâng, who, according to Courant,
47

 “calculated exactly the proportional

numbers to 60 lü,” that is, he extended the Pythagorean system to 60 notes.

These results were published by Se -mà Pyeo , who died in 306 A. D.

King Fâng observed that the 54th note was almost identical with the first

note. Courant’s figures are 177, 147 for the first; 176, 777 for the 54th.

Seventeenth century European theorists who referred definitely to this

system include Mersenne and Kircher. Tanaka mentioned Kircher’s name in

this connection, thus differing from the majority of his contemporaries, who

ascribed the system to Mercator. According to Holder,
48

 Nicholas Mercator

had “deduced an ingenious Invention of finding and applying a least

Common Measure to all Harmonic Intervals, not precisely perfect, but very

near it.” This was the division into 53 commas. There is no evidence, in



Holder’s account, that Mercator intended this system to be used on an

instrument. It was to be merely a “Common Measure.”

Of 25 systems that Sauveur discussed, only two, the 17- and 53-

divisions, were positive. He was unable to appreciate the splendid value of

the thirds of the latter, since, according to his theory, its thirds would have to

be as large as Pythagorean thirds. Romieu did not even mention this system.

Drobisch, too, did not at first (1853) appreciate the 53-division, discarding it

because of its sharp thirds. But two years later he re-evaluated both the 41-

and the 53-divisions, showing that a just major scale could be obtained with

them by using C D F
b
 G B

bb
 C

b
 C.

49

The stage was thus set f or Bosanquet’s detailed study of multiple

division, which culminated in his invention of the “generalized keyboard”

for regular systems. In his article in the Royal Society’s Proceedings, 1874–

75, Bosanquet gave a clear and comprehensive treatment of regular systems,

both positive and negative, with a possible notation for them. He showed

how various systems could be applied to his keyboard, especially the 53- and

118-divisions. In his symmetrical arrangement, 84 keys were needed for the

53 different notes in the octave. Obviously, then, Bosanquet’s name should

be singled out for especial mention, since he applied the system to an

enharmonic harmonium and did not simply discuss it as his predecessors had

done.

As has been noted above, the 55-division is the negative counterpart of

the 53-division, thus having the advantage that ordinary notation can be

used. That is its only advantage, for its fifths (698.2 cents) are no better than

those of the 43-division, and its thirds (392.7 cents) are inferior to the

latter’s. Sauveur devoted considerable space to this system, saying it was

“followed by the musicians.” This is a reasonable statement, for this system

corresponds closely to the 1/6-comma variety of meantone temperament

favored by Silbermann. Thus we have confirmation from France of the

spread of this method.

Romieu showed the correspondence between the 55-division and the 1/5-

comma tuning, and adopted the latter for his “temperament anacratique.”
50

He referred to Sauveur, and also to Ramarin’s system as given in Kircher.

Mattheson
51

 presented this division from Johann Beer’s Schola phonologica,

saying that it required “that an octave should have 55 commas, but no major

or minor tones.”



Sorge, after disapproving of the ordinary 1/4-comma meantone,

continued: “I am better pleased by the famous Capellmeister Telemann’s

system of intervals, in which the octave is divided into 55 geometrical parts

(commas), that grow smaller from step to step.”
52

 Sorge explained that in its

complete state it could not be used on the clavier; but it might be applied to

the violin and to certain wind instruments, and was easiest for singers.

William Jackson
53

 found that the octave consists of 55 10/12 syntonic

commas, or 670 units of 1/12 comma. He might well have assumed the

octave to contain 56 commas precisely, since this is a fairly good division. A

half century after Jackson, an anonymous work printed in Holland
54

 stated

that the ratio 81:80 is contained 56 times in the octave, but did not advocate

this as a system of multiple division. Bosanquet mentioned the 56-division.

It has excellent thirds, being 1 cent flat, as in the 28-division. Its fifths are 5

cents sharp.

The 58-division is also positive, its fifths being 2 cents sharp, as in the

29-division, and its thirds being 7 cents sharp. This is the division that is at

the base of Dom Bedos’ temperament,
55

 although he chose the pitches for

his monochord somewhat irregularly from it.

There are only a few other systems that should be mentioned. The 65-

division has splendid fifths (.5 cent flat) and slightly sharp thirds (1.4 cents

sharp). The 84-division, on the other hand, has only average fifths (2 cents

flat), but excellent thirds (.6 cent flat). The 87-division has slightly sharp

fifths (1.4 cents sharp), and practically perfect thirds (.1 cent flat). The 118-

division has both fifths and thirds that are superlative (.5 cent flat and .2

sharp respectively).

The above four systems excel all others with more than 53 parts in the

octave. But the specialists in multiple division have not always appreciated

them. Sauveur, for example, discussed the 67-, 74-, 98-, 105-, 112-, and 117-

divisions, as well as others that are no better than they, but did not mention

any of the four systems in the previous paragraph. Romieu did not discuss

any systems beyond the 55-division, butwould have approved the 67-, 79-,

and 91-divisions. Drobisch particularly favored the 74-di- vision among

systems that formed the major third regularly, as C-E; among those that used

C-F
b
 as a major third, he mentioned the 65-, 70-, 77-, 89-, and 94-divisions,

and found the 53- and 118-divisions best of all. Bosanquet, praising most

highly the 53- and 118-divisions, had kind words for the 56-, 65-, and 87-

divisions also.



Theory of Multiple Division

The reason for the divergent results obtained by these theorists is that

each had a different theory regarding acceptable divisions of the octave.

Sauveur, although he did list two positive systems, had no real understanding

of divisions in which C-F
b
 could be a major third. To him, the diatonic

semitone was the larger: the problem of temperament was to decide upon a

definite ratio between the diatonic and chromatic semitones, and that would

automatically give a particular division of the octave. If, for example, the

ratio is 4:3, there are 5 × 7 + 2 × 4 = 43 parts; if 5:4, there are 5 × 9 + 2 × 5 =

55 parts. We have pointed out above that only the first of these divisions is at

all satisfactory. Let us see what the limit of the value of the fifth would be if

the (n + l):n series were extended indefinitely. The fifth is (7n + 4)/(12n + 7)

octave, and its limit, as n →∞, is 7/12 octave; that is, the fifth of equal

temperament. The third, similarly, approaches 1/3 octave. Therefore, the

farther the series goes, the better become its fifths, the poorer its thirds. This

would seem, then, to be an inferior theory.

In other divisions listed by Sauveur the difference between the two sizes

of semitone was two, three, or even four parts. Here, again, the fifth

eventually comes close to 7/12 octave and the third to 3/12 octave. Romieu

followed Sauveur’s theory. To an extent so did Bosanquet. But the latter

added the theory of positive systems. The primary positive system is 17, 29,

41, 53, 65, 77, 89, . . . . Here the fifth can be expressed as (7n + 3)/ (12n + 5)

octave. Just as in the negative systems above, the limit of this ratio is 7/12

octave. For the 53- and 65-divisions the fifths are practically perfect; the

thirds of these divisions have approximately equal, but opposite, deviations.

This suggests a secondary positive system, the mean between the former

two: 118, with both fifths and thirds well-nigh perfect. But there is nothing

in these series themselves to facilitate choosing the best division or the two

best. That had to be ascertained by comparing the intervals in the various

divisions after they had been chosen. Again it would seem as if there were

an arbitrary factor present.

We have already spoken of Kornerup and his fondness for the 50-

division.
56

 His “golden” system of music was suggested by a study made by

P.S. Wedell and N. P. J. Bertelsen in 1915. By the method of least squares

they obtained the following octave series in which both the major third (5:4)

and the augmented sixth (that is, the minor seventh, 7:4) approach their pure

values: 3, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, . . . . These of course are



“golden” numbers, the law of the series being 

 ratio which

Kornerup called go. It is this ratio which is used in the golden section of a

line, where , and which Kornerup used as the basis of his

tuning system. By rather simple arithmetic we find that the golden fifth is 

 octave, or 696.2144738 cents. The golden third is 384.8579

cents, only a fair approximation, since the pure third is 386.3137 cents.

Therefore, even if the series is continued indefinitely, the fifth will never be

less than about 6 cents, nor the third than 1.5 cents flat. Since we have

already observed several systems with better thirds and fifths than this, it

would seem as if the golden system is an ignis fatuus.

Drobisch
57

 gave an interesting formula which combined Bosanquet’s

primary and secondary positive systems. The fifth of these systems will be:

(7n – l)/2(6n – 1). For odd values of n, the octave contains 6n – 1 parts; for

even values, twice as many. Hence he obtained the series (with n ranging

from 4 through 15) : 46, 29, 70, 41, 94, 53, 118, 65, 142, 77, 166, 89.

Somewhat more general was Drobisch’s attempt to find a division of the

octave that would insure a good value for the fifth. He expressed the ratio of

the fifth (log 3/2) to the octave (log 2) as a decimal, .5849625, or as a

fraction, 46797/80000. From this ratio, by binary continued fractions, he

obtained the series 2, 5, 12, 41, 53, 306, 665, [15601], . . . . Next he found all

the powers of 3/2 from the 13th to the 53rd, in order to ascertain which

approach a pure octave. This should have checked closely with his previous

list, to which 17 and 29 would be semi-convergents. This, however, is his

complete list: 17, 19, 22, 29, 31, 41, 43, 46, 51, 53. Having eliminated all

positive divisions (those with raised fifths), he still had 19, 31, and 43 to add

to his previous list.

Although the 50-division did not appear on either list, Drobisch

anticipated Kornerup by showing that its fifth lies almost exactly between

the fifths of the 19- and 31-divisions. After these promising beginnings, he

went off at a tangent by trying to find, by least squares, the value of the fifth

that would produce the best values for five different intervals. Then, again

using continued fractions, he found that successive approximations to this

value (.5810541) form the series: 2, 5, 7, 12, 31, 74,.... This is why the 74-

division had an especial appeal for him.



Drobisch’s continued fractions were the first really scientific method of

dividing the octave with regard to the principal consonances, the thirds and

the fifths. The difficulty with it is that there are three magnitudes to be

compared (third, fifth, and octave), but only one ratio (third to octave, fifth

to octave, possibly third to fifth) can be approximated by binary continued

fractions. If we must choose a single ratio, it is better to use that of the fifth

to the octave, as Drobisch did, since the third may be expressed in terms of

the fifth. But the usual formula, T = 4F – 20, is valid only through O = 12.

We have already noted that as fine a musical theorist as Sauveur failed to

appreciate the 53- division, since he used the above formula and obtained a

third that was one part large. Since the syntonic comma is about 1/56 octave,

this formula will fail to give a correct number of parts for the third for any

octave division greater than 28. Thus if O = 41, and F = 24, the formula

makes T = 4 × 24 – 2 × 41 = 14, whereas the correct value is 13. If O = 665,

and F = 389, T = 4 × 389 – 2 × 665 = 226, instead of 214. Knowing the

value of the comma, we can correct our formula to read: T = 4F – 20 – 

But even this would only by accident give a value for the third with as small

a deviation as that for the fifth in the same division«, What is needed is a

method that will approach the just values for third and fifth simultaneously.

The desired solution can be obtained only by ternary continued fractions,

which are a means by which the ratios of three numbers may be

approximated simultaneously, just as the ratios of two numbers may be

approximated by binary continued fractions. When the ordinary or Jacobi

ternary continued fractions are applied to the logarithms of the major third

(5:4), perfect fifth (3:2), and octave (2:1), the octave divisions will be: 3, 25,

28, 31, 87, 817, . . . .

There are two serious faults in these results. In the first place, the

expansion converges too rapidly, and we are interested chiefly in small

values, those for which the octave has fewer than 100 parts. In the second

place, the first few terms are foreign to every other proposed solution, such

as those by Sauveur and Drobisch on previous pages.

To insure slow convergence, a mixed expansion was evolved, which

yields the following excellent series of octave divisions: 3, 5, 7, 12, 19, 31,

34, 53, 87, 118, 559, 612,, . . .
58

 Theonly serious omission is the Hindoo

division, with 22 parts in the octave, The last term shown above (612) was



said by Bosanquet to have been considered very good by Captain J.

Herschel.

There is no record that Captain Herschel ever constructed an

experimental instrument with 612 separate pitches in the octave. Even if he

had done so, it would have been a mechanical monster, incapable of

producing genuine music at the hands of a performer. With the possible

exception of the 19- and 22-divisions, the same can be said of all these

attempts at multiple division. Bosanquet’s 53-division apparently was a

success on the harmonium he constructed with the “generalized keyboard.”

But it, too, was cumbersome to play, and would have been very expensive if

applied to a pipe organ or piano. Thus the mathematical theory, worked out

laboriously by ternary continued fractions, remains theory and nothing more.

The practice for the past five hundred years has favored almost exclusively

systems with only twelve different pitches in the octave. There seems no

immediate prospect of that practice being discarded in favor of any system

of multiple division.
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Chapter VII. IRREGULAR SYSTEMS
1

If we accept Bosanquet’s definition that a “regular” tuning system is one in

which every fifth, or every fifth save one, has the same value, this would

include the Pythagorean tuning, equal temperament, and the several varieties

of the meantone temperament, as well as equal divisions with more than

twelve notes in the octave. With the addition of just intonation, it would

seem as if this covered the ground pretty thoroughly. There are, however, a

great many tuning systems that do not fall into any of the above- mentioned

classes. At first glance these irregular systems present a bewildering variety.

But some of them have been offered by their sponsors as modifications of

existing tuning systems, and others, although not so designated, are also

closely related to regular systems. In fact, it is possible, by making the

bounds sufficiently elastic, to fit every one of these irregular systems into

one or another of certain subclasses. So that, unless we retain Bosanquet’s

strict definition, there is no such thing as an irregular system — one that is

wholly a law unto itself!

Our first group of irregular temperaments consists of modifications of

the meantone temperament. The meantone wolf fifth is 35 cents sharp. The

simplest modification of this temperament is to divide this excess equally

between the fifths C
#
-G

#
 and G

#
(A

b
)-E

b
 (see Table 110). This is the

modification generally, but erroneously, ascribed toSchlick, and, according

to Ellis, still in use in England in the early nineteenth century. The G
#
 now

almost a comma sharper than in the pure 1/4-comma temperament. The

mean deviation is noticeably lower, but the standard deviation is affected

less.

Table 110. Meantone Temperament with Two Sharp Fifths



Mersenne has included a discussion of the meantone temperament with

all his other tuning information. His account differs slightly in the different

works where it occurs. In the Harmonie universelle (pp. 364 f.) he had made

the fifths E
b
-B

b
-F perfect. In the Cogitata physico-mathematica (p. 338) he

asked the reader to correct the “obvious errors” in the previous description.

Here he indicated simply that the wolf fifth will be G
#
-E

b
. Perhaps his real

intent is to be found in Harmonicorum libri XII (p. 60), where these two

fifths are to be sharp, but not so sharp as the wolf fifth, which is still

unusable. Mersenne said that the meantone fifth is tempered “1/136, which

is about 1/4 comma.” This is a gross misstatement, for the ratio given is

larger than 1/2 comma. He probably meant 1/316, which is a reasonably

close value.

Mersenne’s improvements upon the regular meantone temperament are

worth showing, even if the second will be only an approximation to what he

had in mind. In the first temperament (Table 111) the fifths E
b
-B

b
 and B

b
-F

are pure. For the second (Table 112), note that the excess of the minor third

G
#
(A

b
)-F over the third of equal temperament is 30 cents. Let us divide this

excess so that G
#
-E

b
 bears only half of it, the other two fifths one-quarter

each.

Table 111. Mersenne’s Improved Meantone Temperament, No. 1

Table 112. Mersenne’s Improved Meantone Temperament, No. 2

In Mersenne’s first improved meantone system, the mean deviation is no

lower than for the temperament previously shown; but the standard deviation

is lower because more notes are involved in the change. Mersenne’s second



improvement was the pattern for a modification recommended by Rameau.

Now Rameau is noted chiefly in tuning history for his advocacy of equal

temperament. But he vacillated sufficiently in his adherence to it to follow

Huyghens in acclaiming as “the most perfect of all” temperaments that in

which “the fifth is diminished by the 1/4 part of a comma.”
2
 But he was

aware of the pitfalls of the meantone temperament; for he showed that, if the

tuning is begun on C, G
#
 will be a “minor comma,” 2025/2048 too flat. The

remaining fifths, therefore, should be tuned “more just,” “to regain the minor

comma that has been lost.” It would be even better to begin with C
#
, in order

to spread the discrepancy over more notes.

This account sounds as if the excess should be divided equally among

the last five fifths. But, in a later paragraph, Rameau declared that “the

excess of the last two fifths and of the last four or five major thirds is

tolerable, not only because it is almost insensible, but also because it is

found in modulations little used.” Apparently the first three of the five fifths

are not to be so sharp as the final two fifths. Still later he recommended that

“the division begin on B
b
, and only those fifths that follow B-F

#
 should be a

little more just.”

These directions are as vague as Mersenne’s. In Table 113 the division is

begun on B
b
 as Rameau suggested. The fifths from B to G

#
 have been made

pure, and the excess has been divided equally between G
#
-D

#
 and E

b
-B

b
.

Before considering a final, complicated modification of the 1/4-comma

temperament, let us look at William Hawkes’ improvement upon the 1/5-

comma temperament. This resembles Mersenne’s first modification. In it,

according to John Farey,
3
 “each ascending fifth is flattened by one-fifth of a

comma as the instrument is tuned, except that the fifth above E
b
 and the fifth

below G
#
 are directed to be tuned perfect.” Farey continued: “... but why

these anomalies in the system are introduced I am at a loss to guess,

especially as G
#
 is thereby made 1/5 comma the worse by it.” Hawkes’

reason is perfectly valid – to diminish the wolf fifth by 2/5 comma, although

it will still be 16 cents sharp. The alteration results in a somewhat smaller

deviation than for the pure 1/5-comma temperament.



Table 113. Rameau’s Modified Meantone Temperament

The most involved of all these temperaments was that of J. E.

Gallimard,
4
 who brought a knowledge of logarithms to bear upon the

problem, in order to obtain a subtly modified meantone temperament. He

expressed intervals for all the principal tuning systems in Sauveur’s

Decamerides – four-place logarithms without the decimal point. The first of

his original temperaments used the values of the 1/4-comma temperament

for the eight notes from B
b
 to B. If Gallimard had continued in this fashion

until the entire octave had been tuned, the final fifth (D
#
-B

b
) would have

borne the usual wolf, amounting to 103 Deca. He split up this error by

adding an ever-increasing amount to each logarithm for the five fifths from

B to A
#
. Thus there would be a total of 1 + 2 + 3 + 4 + 5 = 15 parts to be

divided into 103 Deca., or about 7 Deca. for each part. In cents, this means

that the first seven fifths have a value of 696 or 697 cents each, the others

699, 702, 705, 708, 710 cents respectively. Gallimard has pure thirds in all

the principal triads of the keys of Fand C, and the poorest thirds in the key of

G
b
. The third on G

b
 itself has 425 cents, practically a diesis sharp!

In Gallimard’s second temperament, the first eight notes were tuned as in

the previous temperament. But he distributed the error among the other five

fifths, proportional to the series 1, 3, 6, 10, 15; that is, to the series n(n–l)/2.

The cents values for these altered fifths are 698, 700, 704, 708, and 714.

Here the worst fifths are worse than in his first temperament, and this error is

reflected in a slightly higher deviation. His worst third, G
b
-B

b
, is still a diesis

sharp.

The deviations are still large for Gallimard’s modification. Had he been

willing to use a modification of the 1/6-comma temperament, with slightly

sharp diatonic thirds, his system would have been better. Modifications of

the latter temperament are to be found later in this chapter, by Young and

Mercadier.

Arnold Schlick’s temperament
5
 deserves special honor, for apparently he

was the first writer in any country to describe a temperament for each note of



the chromatic octave. Shohé Tanaka and Hugo Riemann have broadcast the

erroneous idea that Schlick founded the meantone system. The former spoke

of the “exact instructions” that Schlick had given, and added, “In exact

language this will mean that each fifth is to be flattened by 1/4 comma.”
6

This reads well, but is utter nonsense with relation to what Schlick actually

said. In place of “exact instructions” he gave very indefinite rules that create

a problem for us.

Beginning with F on the organ manual, the fifth F-C is to be somewhat

flat. This same rule is to be followed in tuning the other “claves naturales”

by fifths, making the octaves perfect. As to the major thirds, Schlick said

that “although they will all be too high, it is necessary to make the three

thirds C-E, F-A, and G-B better,... as much as the said thirds are better, so

much will G
#
 be worse to E and B.”

The tuning of the black keys is to be made similarly, tuning upward by

flat fifths from B to obtain F
#
 and C

#
, and tuning downward from F to obtain

B
b
 and E

b
. The semitone between G and A received special attention. As G

#

it was needed as the third above E; as A
b
 it was also needed as the third

below C. So Schlick suggested a mean value for this note, directing that the

fifth A
b
-E

b
 is to be somewhat larger than a perfect fifth.

Whatever Schlick’s system, it could not have been the meantone system

as described so carefully by Tanaka; for it lacks pure thirds. Schlick said

definitely that “all will be too high.” Not even the diatonic thirds are to be

pure, only made “better than the rest.”

What, then, was Schlick’s tuning method? All that can be said with

assurance is that it was an irregular system, lying somewhere between

meantone and equal temperament. We cannot hope to reconstruct it exactly;

but it will be worth while to give some idea, at least, of what it was like. Let

us assume that Schlick used the same size of tempered fifth for each of the

six diatonic fifths; a somewhat larger, but still flat, fifth for the four

chromatic fifths; and a sharp fifth for the two fifths A
b
-E

b
 and C

#
-G

#
. Call

these temperaments x, y, and -z respectively. Then, since the ditonic comma

must be absorbed in the course of the tuning,

6x + 4y – 2z = 24 cents.

Now x is larger than y; let us assume that x = 2y. Since Schlick said that

most of his fifths were to be “somewhat” flat and the other two fifths



“somewhat” sharp, let us assume that x = z. Then

12y + 4y – 4y = 24 cents, y = 2 cents, x = z = 4 cents.

Thus Schlick’s diatonic fifths, of 698 cents, will be tempered by 1/6 comma;

his chromatic fifths, of 700 cents, will be the same size as those in equal

temperament; his two sharp fifths will be of 706 cents. His diatonic thirds

will be six cents sharp; his chromatic thirds, 8 or 10 cents; the thirds E-G
#

and A
b
-C, 18 cents (not unbearable); and the “foreign” thirds, B-D

#
, F

#
-A

#
,

and D
b
-F, 26 cents, slightly more than a comma.

The deviations for Schlick’s hypothetical temperament are less than half

as large as those for the modified meantone temperament that Tanaka

wrongly ascribed to him – the first temperament in this chapter. His is a

good system, holding its own in comparison with systems that were

proposed two or three centuries later. Of the irregular systems discussed in

the first section of this chapter, Schlick’s is superior to Mersenne’s,

Rameau’s, Hawkes’, and Gallimard’s.

Even so, Schlick’s system is not so good as that of Grammateus, next to

be discussed. Therefore we must not assume that the present reconstruction

has erred on the side of Schlick. As a temperament, it has far greater

significance for us than if it had been the meantone temperament, with two

sharp fifths. It is an indication that in the early sixteenth century organ

temperament was nearer to equal temperament than it generally was for

centuries after this time. Schlick’s directions have the added weight that they

represent the practice of an actual organist, unconcerned with mathematics

or the theories of the ancient Greeks.

Modifications of Regular Temperaments

In the next main group of irregular temperaments the diatonic notes are

tuned according to one of the well-known regular temperaments and then

each tone is divided equally to form the chromatic notes. The oldest and best

of them was that of Henricus Grammateus,
7
 or Heinrich Schreyber of Erfurt.

Grammateus tuned the diatonic notes of his monochord according to the

Pythagorean ratios. But when it came to the black keys, the “minor

semitones,” he followed a different procedure. These were formed by

dividing each tone into two equal semitones by the Euclidean method for



finding a geometric mean proportional. Grammateus had a figure to illustrate

the construction. Perhaps he obtained this method of halving intervals

directly from Euclid. But he may have owed it to Faber Stapulensis
8

(Jacques le Febvre), who had shown that it was impossible to divide a tone

numerically into two equal parts, but that the halving of any interval could

be accomplished by geometry. At any rate, Bermudo, whose one tuning

method was identical with Grammateus’, did depend upon Faber for the

method of constructing the mean proportionals. Faber exerted great

influence upon later writers who attempted to solve the tuning problem.

Especially among mathematical writers who dabbled in this field, Faber’s

name was held in something of the same esteem as that of Boethius.

Table 114. Hawkes’ Modified 1/5-Comma Temperament

Table 115. Gallimard’s Modified Meantone Temperament, No. 1

Table 116. Gallimard’s Modified Meantone Temperament, No. 2



Table 117. Schlick’s Temperament (Hypothetical)

Table 118. Grammateus’ Monochord (Pythagorean with Mean Semitones)

This monochord division of Grammateus is seen to be of a subtle and

theoretical nature. It is equivalent to dividing the Pythagorean comma

equally between the fifths B-F
#
 and B

b
-F. As such, it is identical with

Marpurg’s tuning K. This tuning may have been used in practice, but hardly

by anyone who was accustomed, like Schlick, to tune by ear. Note that it was

presented as a method not for fretted instruments, but for organs.

Grammateus said in his introduction: “There follows herewith an amusing

reckoning which serves the art of song called music, and from such

reckoning springs the division of the monochord, from which will then be

taken the proportionate length and width of the organ pipes after the opinion

of Pythagoras.”

So far as we know, Grammateus was the earliest writer with a method for

finding equal semitones as applied to a tuning system. Of course only ten

semitones will be equal, the other two being twelve cents smaller. Probably

many men who later spoke about equal semitones on the lute may have had

in mind some such division, perhaps made by dividing the tones

arithmetically instead of geometrically.

Ganassi
9
 had a method for obtaining equal semitones on the lute and viol

by linear divisions, using the ratios of just intonation for his basic scale.

Although he described his procedure in more complicated terms, his

monochord might have been tuned as follows: with A the fundamental, form

the minor third C with the ratio 6:5; form F and G as perfect fourth and fifth

to C with the respective ratios 4:3 and 3:2; divide the space between A and C



into three equal parts for B
b
 and B; divide the space between G and F into

five equal parts for C
#
, D, E

b
, and E; F

#
 will be half way between F and G,

and G
#
 halfway between G and the octave A. The construction will be even

easier if we start with C: form F and G as perfect fourth and fifth to G;

divide the space between C and F into five equal parts, between F and G into

two equal parts, and between G and the octave C into five equal parts. In the

monochord shown in Table 119, the lengths and ratios have been added

according to Ganassi’s directions.

Actually, the above monochord does not quite represent Ganassi’s ideas.

His lute had only eight frets, so that the position of the notes above F is

rather conjectural. However, he placed a dot where G, the tenth fret, would

naturally fall, and it is reasonable to suppose that he would have made a

linear division for the semitones on either side of G. A greater departure

from his ideas lies in ignoring the tempering of the first and second frets: the

second fret is to be placed higher than 8/9 by the width of the fret, and the

first fret higher than 17/18 by half the width of the fret. Similarly the sixth

fret is to be placed lower than 17/24 by the width of the fret. His drawing for

the monochord is made with unusual care (see Figure H). It appears as if the

width of the fret were about 1/2 of 1 percent of the length of the string. This

tempering would make B
b
 and B sharper by about half a comma, and E

b

flatter by the same amount. The first two changes would not affect the tuning

greatly, but the change in the position of the sixth fret would be harmful.

Since Ganassi was not specific as to the relative length and breadth of the

string, we merely indicate here that he advocated these three tempered

values.



Fig. H. Ganassi’s Method for Placing Frets on the Lute and Viol Reproduced

by courtesy of the Library of Congress

Table 119. Ganassi’s Monochord (Just with Mean Semitones)



Table 120. Reinhard’s Monochord (Variant of Ganassi’s)

Table 121. Malcolm’s Monochord (Variant of Ganassi’s)

Except for the arithmetical divisions, Ganassi’s tuning resembles

Grammateus’ treatment of the Pythagorean tuning, the difference being that

the basic scale here is just intonation. It also resembles Artusi’s treatment of

the meantone temperament, shortly to be described. But even if Ganassi had

used the Euclidean method to divide his tones, his monochord (M.D. 6.0;

S.D. 7.3) would have been inferior to either of the other two, since the

diatonic just scale varies more greatly from equal temperament than either

the Pythagorean or meantone does. But this is a good division, and has the

tremendous advantage that it is the easiest of all chromatic monochords to

form.

Ganassi’s method was discovered independently by Andreas Reinhard,
10

who described the syntonic tuning, and then gave a table in which the space

of each tone, whether major or minor, is halved to obtain the chromatic note.



His table gave string-lengths only, beginning with 45 for F. Since he used D
°

instead of D
-1

, his intervals are in a slightly different order from Ganassi’s.

Ten years after Reinhard, his tuning method was taken over by Abraham

Bartolus,
11

 the sole difference being that the latter began with E (48) instead

of F (45). Bartolus gave Reinhard as his source. At first he advocated the

method for keyboard instruments, and later prescribed it also for fretted

instruments and bells. This general application of a tuning method is

something that is found in very few theorists of Bartolus’ period, most of

whom continued to say with Vicentinothat fretted instruments used equal

temperament, and keyboard instruments, the meantone temperament.

In one of the curious dialogs of Printz’s Phrynis Mytilenaeus
12

 this same

temperament is mentioned. “Charis” describes it and gives the string-lengths

for the C octave, 360 to 180, thus avoiding the fractions that Reinhard had

encountered. Very likely Printz intended this for Reinhard’s tuning, but his

perplexing use of anagrams effectively conceals Reinhard’s name, if it is

indeed hidden there.

Alexander Malcolm
13

 had a division very similar to those of Ganassi and

Reinhard. In fact, it is the inversion of Ganassi’s, with semitones paired in

contrary motion. Although Malcolm said that the tones were to be divided

arithmetically, as 16:17:18, his table of string-lengths (lengths of chords)

represents a very unlikely division, difficult to make. Marpurg, who called

the system ugly, has represented it by a series of increasing numbers, as C,

C
#
, D are 48, 51, 54. This would mean that Malcolm’s ratios are to be taken

as vibration numbers, improbable in view of his own terminology for them.

Since Malcolm’s scale contains the same ratios for semitones as

Ganassi’s and Reinhard’s, although in a different order, the deviation for the

three scales will be the same. But his chromatic notes are all five or six cents

higher than Reinhard’s. It is very probable that Malcolm intended the same

division as Reinhard. Malcolm stated that Thomas Salmon had written about

this scale. But it is often referred to by Malcolm’s name alone. Certainly

these well-nigh equal semitones of Ganassi, Reinhard, Bartolus, Salmon, and

Malcolm represent a long-lived (almost two centuries) and very good way to

divide the octave with ease.

Levens’ “Sisteme”
14

 also had linear divisions only, but was far less

successful than those just described. His monochord had integer numbers

starting with 48 for C. Ganassi’s system had only five consecutive semitones

formed by equal divisions of a larger interval, but Levens’ had seven, from



42 for D to 28 for A. Thus Levens’ consecutive semitones vary in size from

85 to 119 cents. Furthermore, his semitone A-B
b
 is very small (63 cents),

with the Archytas ratio, 28:27; whereas his semitone B
b
-C

b
, with the ratio

27:25, is more than twice as large (133 cents). Levens’ deviations are as

great as for some varieties of just intonation.

Since C is 48 in Levens’ tuning, the monochord could easily be

constructed with a foot rule. But it would not be so easy to construct a

monochord of indefinite length for this tuning. A slight change in the values

of A and B would greatly simplify the construction of the monochord, and at

the same time would almost cut the deviation in half. It would then be

formed thus: Divide the entire string into 8 parts, putting D at the first point

of division, F at the second, and A
b
 at the third. Divide the space between C

and D into two parts for C
#
. Divide the space between D and F into three

parts, for E
b
 and E, and apply EF twice from F toward A

b
, for F

#
 and G.

Divide the space from A
b
 to the higher C (midpoint of the string) into four

equal parts, for A, B
b
, and B.

The third distinct method of forming equal semitones upon the lute stems

from Giovanni Maria Artusi.
15

 But, as with Grammateus’ division, only ten

of the semitones would be equal. In pointing out the “errors of certain

modern composers,” Artusi gave two examples of “intervals false for

singing, but good for playing on the lute.” Thus the diminished seventh, C
#
-

B
b
, in the beginning of Marenzio’s madrigal “False Faith,” is “false for

voices and for modulation, but not false on the lute and the chitarone.”

On the lute, he continued, “the tone is divided into two equal semitones.”

So far Artusi had been speaking very much as had his predecessors. But he

then stated that the tone in question is not the 9:8 tone, but the mean tone

used on the lute and other instruments. Later he called the tempered

semitone “the just half of the mean tone.” For constructing this temperament

he mentioned the mesolabium and the Euclidean construction for a mean

proportional, with references to Zarlino and Faber. The mesolabium would

have been useless for this purpose, unless Artusi had desired complete equal

temperament. But Euclid’s method would have served for constructing

meantones from just major thirds, andthenfor constructing mean semitones

from meantones.

Since Artusi did not give a detailed account of how his temperament was

to be formed, we can only surmise that all the diatonic notes were to be



tuned as in the ordinary meantone temperament and the chromatic notes by

dividing each of the tones in half. This is the “semi-meantone temperament”

mentioned by Ellis,
16

 “in which the natural notes C, D, E, F, G, A, B were

tuned in meantone temperament, and the chromatics were interpolated at

intervals of half a meantone.” According to Ellis, it had been in use on “the

old fretted or bonded clavichords.” Unfortunately, Ellis did not give the

source of this information.

Table 122. Levens’ Monochord (Linear Divisions)

Table 123. Levens’ Monochord (Altered Form)

Table 124. Artusi’s Monochord (Meantone with Mean Semitones) (Bonded Clavichord Tuning, No. 1)

Table 125. Bonded Clavichord Tuning, No. 2



If these bonded clavichords had had their notes paired CC
#
 DD

#
 E FF

#

GG
#
 AA

#
 B C, a fixed ratio could have existed between the notes in each

pair, so that C
#
, for example, would always be 96.5 cents higher than C. Of

course, the two diatonic semitones, E-F and B-C, would be about a comma

larger, at 117 cents each.

Some writers have said that the bonded clavichords necessarily used the

meantone temperament. But nothing would have prevented the performer

from tuning his diatonic tones sharper than mean tones. Suppose, for

example, it had become the fashion to diminish the fifth by 1/6 comma, as in

Bach’s day. Then the bonded clavichord would have had the scale shown in

Table 125.

In this tuning the standard deviation is fairly large because the semitones

E-F and B-C have a deviation of eight cents. If E and B are made four cents

sharper, the mean deviation is unchanged, but the standard deviation is

reduced to 3.0. This much can be done without changing the ratio of C to C
#
.

But a bonded clavichord that was constructed at the time Douwes was

writing (1699; see Chapter III) would have had the ratio of this pair of notes

fixed according to the temperament then in use, perhaps the 1/6-comma

meantone system, and the mean-semitone tuning would then have been even

better than in Table 125.

Furthermore, there is no valid reason why
a
 the ratio of the semitones on a

single string could not have been  if the bonded clavichord had been

constructed at a time when equal temperament was widely accepted. The

only difficulty is that the free clavichords were more common then. But it is

nonsense to think that there was any connection between free clavichords

and equal temperament, except where an old clavichord had retained sem-

itonal ratios that belonged to a type of tuning that had been superseded, Even

then, as we have shown, the open strings could have been tuned so that the

instrument as a whole would have varied only slightly from equal

temperament.

The only troublesome situation would occur when the bonded clavichord

had its ratios fixed so that, for example, the semitone between C
°
 and 

was not a mean semitone, but . Remember that Artusi was writing

about equal semitones on the lute, not on the clavichord. And other theorists,

advocating meantone temperament for keyboard instruments, made no

distinction between the clavichord, on one hand, and the organ and



harpsichord, on the other. Let us see, in Table 126, what could be done when

the fixed chromatic semitone has only 76 cents, the diatonic semitone, 117

cents.

Here we assume that C-C
#
, F-F

#
,and G-G

#
are each 76 cents, and that D-

E
b
 and A-B

b
 are each 117 cents. The other seven semitones are free. If we

make them all equal, each will have 105.4 cents. That means that D and A

are flatter than in the regular meantone temperament; E, F, G, and B sharper.

After this somewhat eccentric tuning of the diatonic notes, the deviation is

almost half that of the regular meantone temperament, but is still not quite so

good as that of the old Pythagorean tuning, untempered. Therefore on a

bonded clavichord that was built for the complete meantone temperament,

even the most scientific tuning of the free strings would not make a very

acceptable temperament. And such clavichords would certainly have delayed

the acceptance of equal temperament.

A corroboration of Artusi’s method of forming equal semitones on the

lute came from Ercole Bottrigari.
17

 He had classified instruments by their

tuning, as Zarlino had done. He went on to show that the lute cannot play in

tune with the cembalo. If the E string of the lute is tuned in unison with the E

of the cembalo, the F’s will be out of tune, the G
#
’s willagainbe in tune, and

the G’s out of tune. He explained that, since on the lute the tone was divided

into two equal semitones, and on the cembalo into two unequal semitones,

then the diatonic semitone E-F, with the ratio of 16:15 tempered, would be

higher on the cembalo than on the lute; but the chromatic semitone G-G
#

(25:24 tempered) would be higher on the lute.

Table 126. Bonded Clavichord Tuning, No.3

This explanation would be true, even if the lute were in equal

temperament. But the interesting question is why the G’s were in tune if the

E’s were, and vice versa. If the lute were in equal temperament, it would

have no pitches in unison with the cembalo save the one that was tuned to a

unison to begin with. Now, Bottrigari was referring to a tuning in which the



order of strings was D, G, C, E, A, D. Of these the E string was called the

“mezanina,” the middle string. On either D string or on the A string, the 2nd,

3rd, and 5th frets formed a diatonic sequence – A, B, C, D or D, E, F, G.

Since the position of the frets was the same on all the strings, the

succession on the E string would have been E, F
#
, G, A. Therefore, if the

diatonic notes on the D and A strings were tuned in unison with those on the

cembalo, as in Artusi’s tuning, the notes E, F
#
, G, and A on the E string will

also be in unison. But E-F on the lute will be half a meantone and so will G-

G
#
, whereas the E-F of the cembalo will be a tempered major semitone and

the G-G
#
 a tempered minor semitone. (F

#
-G, about which Bottrigari said

nothing, will be the ordinary major semitone of the meantone temperament

on both instruments, and will be almost a comma larger than these other

semitones on the lute.) This is the only reasonable explanation of Bottrigari’s

statement, and, since it was made only nine years earlier than Artusi’s

account, we may surmise that this method of tuning was in common use

about 1600. We should be careful, therefore, not to assume that every

statement about the use of equal semitones on the lute necessarily meant

equal temperament, with the ratio of  for the semitone.

Temperaments Largely Pythagorean

A great many irregular temperaments are largely Pythagorean, that is,

they contain many pure fifths. This is reasonable enough, since pure fifths

are easy to tune and do not depart greatly from the fifths of equal

temperament. As we shall see, many of these are typical “paper”

temperaments, ill adapted either to tuning by ear or to setting upon a

monochord. But first we shall examine several that used linear divisions

only.

Martin Agricola,
18

 who was responsible for a good version of just

intonation, showed a monochord for the lute in which the diatonic notes, like

those of Grammateus, were joined by pure fifths. To divide the tones into

diatonic and chromatic semitones, Agricola applied the old doctrine that the

tone is divisible into 9 commas, 5 for the chromatic semitone and 4 for the

diatonic. He tuned a G string, marking off G
#
 as 5/9 the distance from G to

A. That means that G:G
#
:A as 81:76:72. Thus the diatonic semitone G

#
-A



had the ratio 19:18, or almost 94 cents, instead of 256:243 or 90 cents, and

the chromatic semitone 110 cents instead of 114.

Agricola formed his A
#
 and C

#
 like the G

#
. As there were only seven

frets on this string, he did not give values for D
#
, F, and F

#
. But F is of

course a major tone below G, and he had previously shown E
#
 (although he

called it “dis”) tobe a tone below F. But there B
b
 had been shown to be a

tone lower than C, 20 cents flatter than the A
#
 on the other string. These

inconsistencies are bound to arise when any unequal tuning is used on a

fretted instrument, as Galilei pointed out. For the sake of a logical

construction, let us assume (see Table 127) that each of the five tones in the

octave is divided into 5 + 4 commas. This may be slightly better than

Agricola’s tuning would have been if he had applied it to an entire octave.

Table 127. Agricolas Pythagorean-Type Monochord

Table 128 WSng Phǒ’s Pythagorean-Type Monochord

This system, if we can call it a system, is appreciably better than the

ordinary Pythagorean tuning. It contains ten pure fifths; the fifth B-F
#
 is four

cents flat (1/6 comma), and A
#
-F is twenty cents flat. But none of the credit

belongs to the inventor. Agricola, like many another good man, confused

geometrical with arithmetical proportion. The old statement about the sizes

of semitones is very nearly correct when geometrical magnitudes are in

question, but is less accurate when applied to linear divisions. Furthermore,

it was a happy accident that led him to make his chromatic notes sharps. If



he had divided the tone G-A into G-A
b
-A in this same manner, his diatonic

semitone would have contained 88 cents, the chromatic, 116, thus diverging

more widely from equality than the Pythagorean semitones do. An

accidental improvement is the best we can say for this tuning of Agricola.

Agricola’s approximation for the Pythagorean tuning suggests the

monochord of an early Chinese theorist, Wâng Phǒ, who lived toward the

end of the tenth century.
19

 Perhaps he was familiar with the excellent

temperament of Hô Tchheng-thyēn, but, if so, was too timid to follow his

example. Starting with the Pythagorean tuning for the octave 900-450, he

has retained the purity of G and D. He lowered the pitches of all the other

notes by adding two units for C
#
, D

#
, E, and E

#
, and one unit for F

#
, G

#
, A,

A
#
 and B. This was too small a correction for most of the notes, as can be

seen from Table 128, which is comparable to that of Agricola.

John Dowland is another writer whose tuning system, like those of

Ramis, Grammateus, Agricola, and others, had a strong Pythagorean cast. In

his account of “fretting the lute,” C, D, F, G, and A have Pythagorean

tuning.
20

 The chromatic semitone from C to C
#
 is 33:31, or 108 cents, not far

from the Pythagorean of 114 cents. The diatonic semitone from D to E
b
 is

22:21, or 80 cents, considerably flatter than the Pythagorean of 90 cents. G
#

and B
b
 form pure fifths to C

#
 and E

b
 respectively. An unusual feature of the

tuning is F
#
 taken as the arithmetical mean between F and G, and E (!) as the

mean between E
b
 and F. The value for E thus obtained, 264:211, is 388

cents, almost a pure third above C, instead of the expected Pythagorean

third. The third D-F
#
, of 393 cents, is likewise an improvement. Thus the

deviation is somewhat less than that for the Pythagorean timing, being

almost the same as that of Agricola’s system. There is no B on this string,

but we have made B a pure fifth above E.

The trend of Dowland’s tuning resembles that of Ornithopar- chus,

whose Micrologus was translated into English by Dowland. Ornithoparchus’

division of the monochord was entirely Pythagorean, a ten-note system

extending from A
b
 to B by pure fifths. It was natural for Ornithoparchus to

advocate the Pythagorean tuning, since most of his contemporaries had not

yet departed from it. But a century later, the Pythagorean tuning was

becoming somewhat rare. And yet Dowland’s fellow countryman Thomas

Morley, whose precepts have been quoted by everyone who writes about

Elizabethan music, gave only a Pythagorean monochord.



Unusual ratios are a feature of Colonna’s tunings also, although he

definitely included some ratios that belong to just intonation as well.
21

 He is

noted in the field of multiple division for having described an instrument, the

Sambuca Lincea, similar to Vicentino’s Archicembalo, upon which the

division of the octave into §1 parts could be accomplished. His mathematical

theory of intervals is very ingenious, including superparticular proportions,

but also more subtle fractions. He began with certain well-known consonant

ratios: 1:1 (unison), 6:5 (minor third), 5:4 (major third),4:3 (fourth), 3:2

(fifth), and 5:3 (major sixth). Then if a string of the monochord is divided to

produce a certain interval, the sounding part of the string should produce

with the other part (the Residuo) either one of the above intervals or a higher

octave of it. This means that if any of the above ratios is called b:a, intervals

derived from it have ratios of the form (2
k
b + a):2

k
b. For example, from 1:1

comes 17:16; from 6:5 comes 11:6; from 3:2 comes 25:24. Colonna’s two

chromatic monochords are shown in Tables 130 and 131. Each contains

seven pure fifths and several pure thirds. The worst feature of both

monochords is the 55:54 chromatic semitone of 30 cents (as G-G
#
 or B

#
-B) –

not much larger than a comma. Almost as bad is the 12:11 diatonic semitone

of 152 cents, as G
#
-A or B

#
-C.

22
 The 27:25 diatonic semitone of 134 cents,

as F
#–2

-G
°
 or C

#–2
- D

°
, is not good either, but is a blemish found also in

ordinary Just intonation. A redeeming feature of the first monochord is the

division of the 9:8 tone into 17:16 and 18:17 semitones.

Colonna’s division of the 10:9 tone into 12:11 and 55:54 “semitones” is

reminiscent of the superparticular division of the 10:9 tone that Ptolemy

used for his soft chromatic tetrachord, 5/6 × 14/15 × 27/28, and of the

common division of just intonation derived from Didymus’ chromatic, 5/6 ×

24/25 × 15/16.
23

 other possible divisions of the 10:9 tone are 13:12 and

40:39, which is somewhat better than Colonna’s division, and the linear

division 19:18 and 20:19, as inGanassi. Divisions of the 9:8 tone include

17:16 and 18:17, as well as 15:14 and 21:20, both of which Colonna used.

Other possible superparticular divisions of the 9:8 tone are 13:12 and 27:26;

12:11 and 33:32; 11:10 and 45:44; and 10:9 and 81:80, this last, of course,

being the minor tone and comma.



Table 129. Dowland’s Lute Tuning

Table 130. Colonna’s Irregular Just Intonation, No. 1



Table 131. Colonna’s Irregular Just Intonation, No. 2

Divisions of the Ditonic Comma

The Pythagorean-type temperaments in our second group are more

difficult to construct, in that they contain unusual divisions of the ditonic

comma. By ear, these temperaments would have been almost impossible in

many cases, because there are no pure intervals to check by as in some

varieties of the meantone temperament, nor are there even fairly definite

tempered intervals, such as the C E G
#
 C of equal temperament, which also

provide a good check. For the division of the monochord, these

temperaments could have been set down readily with the aid of logarithms,

and they can be expressed in our modern cents with the greatest of ease.

Computers who did not use logarithms were able to achieve comparable

results by a linear division of the comma, but had less success if they

ignored the schisma which separates the syntonic from the ditonic comma.

In most of our tables we shall assume, for the sake of convenience, that the

ditonic comma has been given a correct geometric division, and shall assign

cents values to the intervals accordingly.

The leading exponents of this sophisticated sort of comma- juggling

were Werckmeister, Neidhardt, and Marpurg.
24

 Each has expressed the

alteration of his fifths and thirds in the 12th part of a comma, which, strictly,

should be the ditonic comma. Since the ditonic comma is approximately 24

cents, this means that 2 cents will be taken as the unit of tempering. Thus the



octave would contain 600 parts, or thereabouts. This is an interesting

forerunner of the cents representation.

In evaluating this group of temperaments, it should be pointed out that

there are two opposing points of view. Since we are likely to regard most

highly those irregular systems that come closest to equal temperament, there

will be in each subclass a temperament by Marpurg or Neidhardt that wins

the award because in it the altered fifths are symmetrically arranged among

the entire 12 fifths of the temperament. In these temperaments all keys are

pretty much alike, whether nearer to C major or F
#
 major.

But the whole intent of having a “circulating” temperament, of having

the octave “well tempered,” was to have greater consonance in the keys most

used than in those more remote. This is made very clear in the writings of

Werckmeister and Neidhardt. We should fail in our duty, therefore, did we

not refer at the end of this chapter to temperaments we have discussed that

satisfy this ideal of graduated dissonance. Both Werckmeister and Neidhardt

had a proper respect for equal temperament also, but a fanatic like

Tempelhof,
25

 writing fifty to seventy-five years later, could say that equal

temperament was the worst possible temperament because one scale must

differ from another in its tuning!

The simplest alteration of the Pythagorean tuning is to divide the comma

into two equal parts. If the altered fifths are consecutive, there will be a

temperament somewhat like the modification of the meantone temperament

shown at the beginning of this chapter. This is Kirnberger’s tuning,
26

 except

that he has divided the syntonic comma arithmetically between the fifths D-

A and A-E, thus getting a slightly smaller deviation than if he had divided

the ditonic comma (see Table 132).



Table 132. Kirnberger’s Temperament (1/2-Comma)

Baron von Wiese’s second tuning was exactly the same as Kirnberger’s.

He was so confirmed a Pythagorean that he called E
-1

 F
#-1

 and B
-1

 by the

respective names F
b°

, G
b°

, and C
b°

, each of which would have been 2 cents

(the schisma) flatter than the corresponding syntonic value. However, von

Wiese’s first temperament
27

 actually did divide the ditonic comma, making

his F# the mean between D
b°

 and B
°
 (Table 133). His ratio for F

#
,

5760:4073, is an excellent approximation for the square root of one-half.

Von Wiese’s other three temperaments are respectable enough, for in

them the tempered fifths are separated by a minor or major third. Since the

deviation is the same for all three, we show No. 3 only (Table 134). Von

Wiese has indicated it as extending from B
b
 to D

#
; but from the construction

it extends from G
b
 to B, with the fifths E

b
-B

b
 and B-G

b
 each tempered by

half the ditonic comma. The best arrangement of the tempered fifths is for

them to be separated by a semitone or a tritone. The latter arrangement

occurs in Grammateus’ temperament, shown earlier in this chapter, which is

identical with Marpurg’s K. Note that von Wiese’s No. 3 is the same as

Grammateus’ except for B
b
.

Table 133. Von Wiese’s Temperament, No. 1 (1/2-Comma)



Table 134. Von Wiese’s Temperament, No. 3 (1/2-Comma)

Next in order would be temperaments in which the ditonic comma is

divided among three thirds. Charles, Earl Stanhope
28

 advocated such a

division, but indicated that the syntonic comma should be divided among the

fifths G-D, D-A, and A-E. This left the schisma, 2 cents, to be divided

among the four fifths from Bb to G
b
, the other five fifths being pure. Thus

the four black keys are only one cent sharper than if the tuning were purely

Pythagorean. He might better have divided the ditonic comma among his

first three fifths, and not have had the approximate fifths to worry over. With

the ditonic comma divided among three consecutive fifths, the mean

deviation is 9.0, the standard deviation 9.7. Stanhope’s own temperament

(Table 135) is slightly better than this, just as Kirnberger’s was better than

von Wiese’s No. 1, because the former divided the syntonic comma.

Werckmeister
29

 has shown a temperament in which the comma is

divided into three parts. It is, however, even less satisfactory than

Stanhope’s, because it contains five fifths flat by 1/3 comma, two fifths

sharp by 1/3 comma, and only five perfect fifths (see Table 136). This is the

poorest of the three temperaments Werckmeister called “correct.”

Bendeler has used the 1/3-comma tempering in two of his three organ

temperaments.
30

 In the first, the tempering is shared by the fifths C-G, G-D,

and B-F# (Table 137). Since these are not all consecutive fifths in the circle

of fifths, his deviation is considerably less than Stanhope’s.



Table 135. Stanhope’s Temperament (1/3-Comma)

In Bendeler’s second temperament (Table 138), the comma is divided

among the three fifths C-G, D-A, and F
#
-C

#
. Since the fifths are more widely

separated than before, the deviation is less than for No. 1.

Table 136. Werckmeister’s Correct Temperament, No. 2 (1/3-Comma)

Table 137. Bendeler’s Temperament, No. 1 (1/3-Comma)

Table 138. Bendeler’s Temperament, No. 2 (1/3-Comma)



The best arrangement of the three tempered fifths is to have them

separated by major thirds, as in Marpurg’s I, where E and G
#
 are the same

pitches as in equal temperament (see Table 139).

The most famous of Werckmeister’s irregular divisions has the comma

divided equally among the four fifths C-G, G-D, D-A, and B-F
#
.
31

since three

of these fifths are consecutive, the deviation is comparatively large (see

Table 140). This is the only temperament that Sorge has ascribed to

Werckmeister. The same division was accepted bv Marpurg, and a modern

acoustician, Karl Erich Schumann,
32

 has followed suit, without mentioning

any secondary source.

In Werckmeister’s third “correct” temperament (Table 141), five fifths

(D-A, A-E, F
#
-C

#
, C

#
-G

#
, and F-C) are flattened by 1/4 comma, and one

fifth, G
#
-D

#
, is raised by the same amount. Thanks, however, to the more

nearly symmetrical arrangement of the tempered fifths, the deviation is

slightly less than for his first temperament.

In his third temperament, Bendeler,
33

 unhampered by a sharp fifth and

with a fairly symmetrical arrangement of the four flattened fifths (C-G, G-D,

E-B, G
#
-D

#
), succeeded in achieving a very good division (Table 142).

But, as usual, the best temperament for a particular division of the

comma is completely symmetrical, and so Neidhardt, in his fourth Fifth-

Circle (Table 143), gave E
b
, F

#
, and A the same pitches they would have in

equal temperament. (Marpurg’s H is identical with this.)

When the comma is divided into five parts and the tempered fifths are

arranged as symmetrically as possible, the deviation begins to approach the

vanishing point. (Paradoxically, this deviation is lower than for a wholly

symmetrical arrangement of six fifths tempered by 1/6 comma, shown in the

next section.) In Marpurg’s G (Table 144) this near-symmetrical division is

made. Marpurg called the amount of tempering /12 = 5/24 comma, which

would be 5 cents, slightly larger than 1/5 comma or 4.8 cents. Although the

difference between the two is wholly negligible, the latter amount of

tempering has been used in making the table, with the values rounded off to

even cents.



Table 139. Marpurg’s Temperament I (1/3-Comma)

Table 140. Werckmeister’s Correct Temperament, No. 1 (1/4-Comma)

Table 141. Werckmeister’s Correct Temperament, No. 3 (1/4-Comma)

Table 142. Bendeler’s Temperament, No. 3 (1/4-Comma)

Table 143. Neidhardt’s Fifth-Circle, No. 4 (1/4-Comma)



Table 144. Marpurg’s Temperament G (1/5-Comma)

The 1/6-comma temperament is recommended by Thomas Young,
34

 as a

simpler method than the irregular temperament described later in this

chapter. In his own words, “In practice, nearly the same effect may be very

simply produced, by tuning C to F, B
b
, E

b
, G

#
, C

#
, F

#
 six perfect fourths; and

C, G, D, A, E, B, F
#
 six equally imperfect fifths.” In other words, he had six

consecutive fifths tempered by 1/6 ditonic comma (see Table 145). As a

practical tuning method, this would not be difficult, and it certainly does

differentiate between near and remote keys. This is the tuning of the Out-Of-

Tune Piano, the sort of tuning into which a piano originally in equal

temperament might fall if played upon by a beginner.
35

 Young’s key of G is

the best, that of D
b
 the worst. If he had commenced his set of tempered fifths

with F instead of C, the key of C would have been best.

Table 145. Young’s Temperament No. 2 (1/6-Comma)

In Neidhardt’s second Fifth-Circle (Table 146), all the fifths are altered

by 1/6 comma, nine being lowered and three raised. Since the arrangement is

completely symmetrical, the deviation is low.

Table 146. Neidhardt’s Fifth-Circle, No. 2 (1/6-Comma)



Of course, a symmetrical arrangement of fifths alternately pure and

lowered by 1/6 comma comes closest to equal temperament. Both Neidhardt

(Third Fifth-Circle) and Marpurg (F) have presented this temperament

(Table 147). Observe that in it the consecutive notes are alternately the same

as in equal temperament and 2 cents higher, so that the mean deviation and

standard deviation both are equal to 2.0. More elaborate patterns of

semitones either 2 cents higher or lower than in equal temperament could be

obtained by having two pure fifths alternate with two tempered fifths, or by

having three pure fifths similarly alternate with three tempered ones.

Table 147. Neidhardt’s Fifth-Circle, No. 3 (1/6-Comma)

Bermudo,
36

 who had also formed equal semitones on the lute by the

method of Grammateus, made a real contribution to tuning theory in a

chapter “concerning the seven-stringed vihuela upon which all the semitones

can be played.” This was a method intended for experienced players. His

account of the division is necessarily lengthy and need not be given as a

whole. G is the fundamental, and there are 10 frets, thus making no

provision for F
#
 on this string. The notes from E

b
 to G inclusive are formed

by a succession of pure fifths. The thirds G-B and A-C
#
 are each 2/3

syntonic comma sharper than pure thirds. The tone G-A is 1/6 comma less

than a major tone. Then D and E form pure fourths with A and B,

respectively, and G
#
 is a fourth below C

#
.

The geometry, which consists of linear divisions only, is easy to follow,

especially with the aid of Bermudo’s monochord diagram (see Figure I). In

ratios, as will be seen in Table 148, it becomes quite complicated, and, if

these ratios were to be represented by least integers, as was done in many of

these systems, the fundamental note G would have to be 62,985,600! Let us

assume that F
#
, the unused 11th fret, is a pure fourth above C

#
.



Fig. I. Bermudo, Method for Placing Frets on the Vihuela Reproduced by

courtesy of the Library of Congress

Table 148. Bermudo’s Vihuela Temperament (1/6-1/2-Comma)

The reason Bermudo’s system is presented in connection with the use of

fifths tempered by 1/6 comma is that that is precisely what he has. If the

temperament of successive fifths is examined, it will be seen that the fifths

on G, A, and B are each tempered by 1/B comma, eight fifths are pure, and

the usual wolf fifth, G
#
- E

b
, is 1/2 comma flat. (It really should not be

calleda wolf fifth, since it is flat, not sharp, and the usual poor thirds of the

mean- tone temperaments, on B through G
#
, are the best of all!)

This is the first time, so far as is known, that any writer had suggested

the formation of notes used in equal temperament by the proper division of

the comma for those notes. Of course he was making an arithmetical

division of the syntonic comma, and thus had small errors. But so did the

late seventeenth and most of the eighteenth century comma-splitters from

Werckmeister to Kirnberger and Stanhope. Bermudo’s three tempered fifths

are as symmetrically arranged as in the Neidhardt-Marpurg system shown

before this. It is too bad he did not continue his process by tempering D
#
 by

2/3 comma and E
#
 by 5/3 comma. Then he would not have had the half-

comma error concentrated on a single fifth, nor a Pythagorean third on E
b
.

But this method of Bermudo is worthy of our respect as a very early



approach to equal temperament, somewhat difficult, but not impracticable

for a skilled performer to use.

Werckmeister is the only later writer to temper his fifths by the 7th part

of a comma, perhaps following the example of Zar- lino’s 2/7-comma

variety of meantone temperament.
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 But his Septenarium temperament is a

rather eccentric thing. In it the fifths C-G, B
b
-F, and B-F

#
 are 1/7 comma

flat; F
#
-C

#
 is 2/7 comma flat; G-D is 4/7 comma flat; D-A and G

#
-D

#
 are 1/7

comma sharp; the remaining five fifths are pure. (The cents values have been

worked out from Werckmeister’s string-lengths, and are slightly inaccurate.)

Table 149. Werckmeister’s Septenarium Temperament (1/7-Comma)

Table 150. Symmetric Septenarium Temperament (1/7-Comma)

For the sake of a comparison with Werckmeister’s temperament, a

symmetric version of the 1/7-comma temperament is shown in Table 150. It

is even nearer equal temperament than Marpurg’s G, which hada symmetric

distribution of the fifth part of the comma.

Next we have a large group of temperaments in which some fifths are

tempered by 1/6 comma and others by 1/12 comma, while the remaining

fifths are pure. Since 1/12 comma is the temperament of the fifth of equal

temperament, there will be as many pure fifths as there are fifths tempered

by 1/6 comma. This group of temperaments might be considered, therefore,

as variants of the previously described temperaments in which there are six

pure fifths and six fifths tempered by 1/6 comma.



Neidhardt was the great inventor of temperaments in which the comma

was divided into both 6 parts and 12 parts.
38

 All three “circulating”

temperaments fall into this group. They happen to be among the poorest of

this type that he or the other theorists have evolved —that is, when

compared with equal temperament. But we shall see that they do satisfy

Neidhardt’s purpose in creating them. The first circulating temperament

(Table 151) has four fifths in each group – pure, tempered by 1/12 comma,

and by 1/5 comma. Since four consecutive fifths in it are tempered by 1/5

comma, it may be considered a variant of the 1/5- comma meantone

temperament.

The first of Thomas Young’s pair of temperaments is very like the

Neidhardt temperament shown in Table 151.
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 Young said, “It appears to

me, that every purpose maybe answered, by making C:E too sharp by a

quarter of a comma, which will not offend the nicest ear; E:G
#
 and A

b
:C

equal; F
#
:A

#
 too sharp by a comma; and the major thirds of all the

intermediate keys more or less perfect as they approach more or less to C in

the order of modulation.”

Table 151. Neidhardt’s Circulating Temperament, No. 1 (1/12-, 1/6-Comma)

Young accomplished the first result by tempering the fifths on C, G, D,

and A by 3/16 syntonic comma, and the other results by tempering the fifths

on F, B
b
, E, and B by approximately 1/12 syntonic comma, and leaving the

other four fifths pure. The total amount of tempering would be 13/12

syntonic comma, this being sufficiently close to the ratio of the ditonic to the

syntonic comma. Young has given numbers for his monochord, and they

agree well with his theory. He has made a mistake, however, in calculating

the length for E
b
 (83810), which was intended as a pure fourth below G# The

corrected length is given in Table 152.



Table 152. Young’s Temperament, No. 1 (1/12-, 3/16-Comma)

Now 3/16 syntonic comma is an awkward interval to deal with. If,

instead, we take 1/5 ditonic comma as the temperament of Young’s four

diatonic fifths, and 1/12 ditonic comma for his second group of fifths, his

monochord will be precisely of theNeid- hardt type. The differences from

the monochord he did give are so small that the cents values do not differ.

The arrangement of his second group of fifths is slightly different from

Neidhardt’s, and this accounts for the difference in deviation.

Mercadier’s temperament (Table 153) closely resembles Young’s, even

to the total amount of tempering – 13/12 syntonic comma.
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 He directed that

the fifths from C to E should be flat by 1/5 syntonic comma, and those from

E to G
#
 flat by 1/12 comma. Then G

#
 is taken as A

b
, the next three fifths are

to be just, and the fifth F-C then turns out to be about 1/12 comma flat.

Table 153. Mercadier’s Temperament (1/12-, 1/6-Comma)



Table 154. Marpurg’s Temperament D (1/12-, 1/6-Comma)

Table 155. Neidhardt’s Circulating Temperament, No. 2 (1/12-, 1/6-Comma)

Table 156. Neidhardt’s Circulating Temperament, No. 3 (1/12-, 1/6-Comma)

Table 157. Neidhardt’s Third-Circle, No. 4 (1/12-, 1/6-Comma)

As usual, Marpurg has presented the symmetric version (Table 154) of

the above temperaments. It has negligible deviations.

In the second and third of Neidhardt’s “circulating” temperaments, six

fifths are tempered by 1/12 comma, and three each are pure or are tempered

by 1/6 comma. These two temperaments (Tables 155 and 156) are quite

similar, both containing three consecutive fifths tempered by 1/6 comma.

Thus they possibly represent the extreme case of modification of the 1/6-

comma meantone temperament. Number 3 has a shade greater symmetry and

hence smaller deviation.



Temperaments 4 and 3 of Neidhardt’s Third-Circle have deviations very

similar to those of the temperaments shown in Tables 155 and 156. In fact,

their mean deviations are equal respectively to those of No. 2 and No. 3 in

these tables, but their standard deviations are higher because they contain

some sharp fifths. In No. 4 (Table 157), there are three fifths tempered by

1/12 comma and five by 1/6 comma; three fifths are pure, and one is 1/12

comma sharp. In No. 3 (Table 158), four fifths are 1/12 comma flat, six are

1/5 comma flat, and two are 1/5 comma sharp. (The same tempered fifths as

in No. 3 appear in our hypothetical version of Schlick’s temperament, but

differently arranged.)

Once again Marpurg has given the symmetric version of Neidhardt’s

temperaments, specifically of the second and third “circulating”

temperaments.

Logically we show next two temperaments (Tables 160 and 161) in

which eight fifths are flat by 1/12 comma and two by 1/6 comma, while two

are pure. Such a temperament is the fifth of Neidhardt’s Third-Circle.

The temperament shown in Table 160 comes so close to equal

temperament that in practice it could not be improved upon. But the canny

Marpurg has halved its deviation by using greater symmetry (see Table 161).

Another temperament of Neidhardt has the same deviations as those of

his fifth Third-Circle (Table 160). This is the fifth temperament in his Fifth-

Circle (Table 162), in which six fifths are flat by 1/12 comma and four by

1/5 comma, while two are sharp by 1/12 comma.

Table 158. Neidhardt’s Third-Circle, No. 3 (1/12-, 1/6-Comma)

Table 159. Marpurg’s Temperament C (1/12-, 1/6-Comma)



Table 160. Neidhardt’s Third-Circle, No. 5 (1/12-, 1/6-Comma)

Table 161. Marpurg’s Temperament B (1/12-, 1/6-Comma)

Table 162. Neidhardt’s Fifth-Circle, No. 5 (1/12-, 1/6-Comma

The remaining temperaments in this group come from Marpurg. The first

(Table 163) of his temperaments in which some fifths are sharp contains six

fifths flat by 1/5 comma, and three fifths each flat or sharp by 1/12 comma.
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Obviously, this is a variant upon the temperament in which six fifths are flat

by 1/6 comma, the other six pure. The mean deviation, 2.0, is the same, but,

as expected, the standard deviation is higher here. Other possible variants

would contain, in addition to the six fifths tempered by 1/6 comma, two

fifths each flat or sharp by 1/2 comma or pure; or four pure fifths and one

each flat or sharp by 1/12 comma.

The second temperament (Table 164) in this other set by Marpurg has

fifths that do not differ greatly from those in the previous temperament. Here

the six fifths are tempered by the unusual amount of 5/24 comma (shown as

the same fraction that did duty as 1/6 in his Temperament G, but really 5/24

this time), and three each are pure or 1/12 comma sharp.

In Marpurg’s Temperament A (Table 165), ten fifths are flat by 1/12

comma, and one each is pure or 1/6 comma flat. This is as far as one can go



in this direction, for the next step would be to have twelve fifths flat by 1/12

comma – that is, equal temperament.

The other limit for this sequence of temperaments by Marpurg is his own

Temperament F, already shown as Neidhardt’s Fifth-Circle, No. 3 (Table

147). In it there are no fifths tempered by 1/12 comma, and six fifths each

pure or flat by 1/6 comma. Just before it in the set comes Temperament E

(Table 166), which has two fifths flat by 1/12 comma, and five fifths each

pure or flat by 1/5 comma.

Marpurg’s Temperament E, shown in Table 166, has the least deviation

of the five temperaments in the set. Note the deviations again: A, 1.7,1.8; B,

0.7,1.1; C, 1.0,1.4; D, 1.3,1.6; E, 0.3,0.8. From the table for E it is easy to

see why its deviation is low: there are seven consecutive notes with cents

values ending in 00, and five ending in 02. Therefore the total deviation will

be only 4 cents, or a mean deviation of 0.3. In the other temperaments of the

set, some values end in 00 and others in 98 or 02. Butin no other

temperament do all the 00’s come together as they do in E. Therefore the

deviation is higher in the other temperaments. But it need not have been

higher. If in A the pure fifth is followed directly by the fifth flat by 1/6

comma, there will be only one note with an 02 ending, and eleven notes with

00. The fifths in B, C, and D can be so arranged that there will be

respectively 2, 3, and 4 consecutive notes with an 02 (or 98) ending, the

other endings being 00. Thus the minimum deviation (M.D. 0.3; S.D. 0.8)

will be the same for all five temperaments, but this will not always involve

the most symmetrical version of the fifths.

Table 163. Marpurg’s Temperament, No. 1 (1/12-, 1/6-Comma)



Table 164. Marpurg’s Temperament, No. 2 (1/12-, 5/24-Comma)

Table 165. Marpurg’s Temperament A (1/12-, 1/6-Comma)

Table 166. Marpurg’s Temperament E (1/12-, 1/6-Comma)

Table 167. Neidhardt’s Fifth-Circle, No. 6 (1/12-, 1/4-Comma)

Table 168. Neidhardt’s Fifth-Circle, No. 9 (1/12-, 1/4-Comma)

The remaining nine temperaments are all by Neidhardt, and each

contains some fifths tempered by 1/4 comma. His Fifth- Circle, No. 6 (Table



167) has four fifths each flat by 1/4 comma or flat or sharp by 1/12 comma.

His arrangement is symmetric.

In Temperament No. 9 of this same set (Table 168), Neidhardt has three

fifths flat by 1/4 comma, three flat by 1/12 comma, and six pure. Again the

arrangement is symmetric. The deviation is lower than for the previous

temperament.

In Temperaments 7 and 10 (Table 169 and 170), Neidhardt divides the

comma into 4 or 6 parts. No. 7 is especially complicated, having eight fifths

flat by 1/5 comma and two sharp by 1/5 comma, and one each flat or sharp

by 1/4 comma. It would be difficult to construct a symmetric arrangement

from such an array, and Neidhardt has not attempted to do so.

Table 169. Neidhardt’s Fifth-Circle, No. 7 (1/6-, 1/4-Comma)

Table 170. Neidhardt’s Fifth-Circle, No. 10 (1/6-, 1/4-Comma)

Table 171. Neidhardt’s Fifth-Circle, No. 10, Idealized



Table 172. Neidhardt’s Sample Temperament, No. 2 (1/12-, 1/6-, 1/4-Comma)

Temperament 10 (Table 170) is considerably simpler, with two fifths flat

by 1/4 comma, three by 1/5 comma, and the remaining seven pure. The

deviation is slightly lower than for No. 7.

But in No. 10 also the arrangement is far from symmetric. Letus see

what would result from an approach to symmetry. Although the deviation is

about halved in Table 171, it is possible that, as in the alphabetically named

temperaments by Marpurg, the least deviation for all four of these Neidhardt

temperaments will not occur with the most nearly symmetric arrangement of

the fifths.

In the remaining five temperaments in this group, Neidhardt has

tempered his fifths by 1/4, 1/6, and 1/12 comma. His second and third

“sample” temperaments (the first was just intonation) have relatively high

deviations.
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 No. 2 (Table 172) has three fifths flat, by 1/4 comma, one by

1/6, two by 1/12, five pure, and one 1/12 comma sharp.

Neidhardt’s No. 3 (Table 173) is somewhat less erratic than No. 2, with

six pure fifths, and two each flat by 1/4, 1/5, or 1/12 comma. It also has a

lower deviation than No. 2.

Rather similar to the above sample temperaments is his Third-Circle, No. 1

(Table 174), in which five fifths are pure, two flat by 1/4 comma, one by

1/%, and four by 1/2.

Two temperaments from the Fifth-Circle are considerably better than the

three just mentioned. In No. 11 (Table 175) there are no pure fifths; two

fifths are flat by 1/4 comma, two by 1/6, five by 1/12, while three are 1/12

comma sharp.



Table 173. Neidhardt’s Sample Temperament, No. 3 (1/12-, 1/6-, 1/4-Comma)

Table 174. Neidhardt’s Third-Circle, No. 1 (1/12-, 1/6-, 1/4-Comma)

Table 175. Neidhardt’s Fifth-Circle, No. 11 (1/12-, 1/6-, 1/4-Comma)

Table 176. Neidhardt’s Fifth-Circle, No. 12 (1/12-, 1/6-, 1/4-Comma)

In No. 12 (Table 176) there are six pure fifths, and two each flat by 1/4,

1/6, or 1/12 comma. This has precisely the same number of each size of fifth

as the third sample temperament, in which the deviation was almost three

times as great. The reason, of course, is to be found in the symmetry of No.

12.

Metius’ System



At the beginning of this chapter it was said that “by making the bounds

sufficiently elastic” all irregular systems could be classified. That statement

is severely tested by the final tuning method listed in this part of the chapter,

one presented by Adrian Metius. It was not possible to see Metius’ own

description, and Nierop, who gave the monochord, seemed to have been

puzzled by it himself.
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 Nierop has shown this monochord in two forms, one

from 1000 to 500 and the other from 11520 to 5760, with E the fundamental.

It is evident from the context that the second monochord was given simply

to show how its lengths have been increased or diminished by arithmetic

divisions of the syntonic comma, and that only the first table comes from

Metius directly.

By using Metius’ lengths, it is possible to reconstruct the tempering,

indicated by the exponents. Apparently there is only one pure fifth, C-G. The

fifths on B
b
 and A are 1/12 comma flat, those on F and E 1/6 comma flat, on

B and C
#
 1/2 comma flat, and on G 3/4 comma flat! The fifths on D and F

#

are 1/3 comma sharp, that on 1/3 comma sharp, and on G
#
 1/2 comma sharp.

Metius’ system does not seem to follow any known system of

temperament or modification thereof. Specifically, it does not resemble the

meantone temperament, for only the thirds on B
b
 and E are pure, the other

thirds varying in size up to 417 cents for G-B and 419 cents for A-C. But

there is no pattern apparent in the alterations, no planned shift from good to

poor keys. The fifth G-D, 3/4 comma flat, is almost as unsatisfactory as this

same fifth would be in just intonation. There is no good reason for both of

the fifths B-F
#
 and C

#
-G

#
 to be half a comma flat and then to have the fifth

G
#
-D

#
 half a comma sharp. All in all, Metius has been just about as erratic as

he could be.

And yet the system, despite its irregularities, is much better than the

ordinary 1/4-comma meantone temperament and is slightly better than the

Pythagorean or the 1/6-comma meantone. That much we must grudgingly

admit. Metius’ temperament contains eight different sizes of fifth. But that is

not much less regular than many of the fairly good temperaments we have

shown that had four sizes of fifth, while Werckmeister’s Septe- nariumand

Neidhardt’s second sample temperament had five different sizes. And so let

us label it highly irregular, but not really unworkable.

“Good” Temperaments



With Metius’ enigmatic temperament we have described the last of our

irregular tuning systems, and are in a position to try to formulate a judgment

upon them. It is easy to see how the modifications of the Pythagorean, just,

or meantone system by the halving of tones, as in the systems of

Grammateus, Ganassi, or Artusi, would make these systems much more like

equal temperament. But it is more difficult to see what Werckmeister,

Neidhardt, and Marpurg were driving at in their multifarious attempts to

distribute the comma unequally among the twelve fifths.

If, as was pointed out at the beginning of an earlier section of this

chapter, our ideal is equal temperament, we shall praise highly some of the

beautifully symmetric systems of Marpurg and Neidhardt. But the trouble is

that they are too good! The deviations for most of them are lower than for a

piano allegedly tuned in equal temperament by the most skillful tuner. In

some cases these temperaments might have been successfully transferred

from paper to practice by calculating the number of beats for each of the

beating fifths. Since most of the fifths were to be tuned pure, such a method

might have been easier than that pursued today. These same temperaments

might have been reduced to distances on a monochord with slightly greater

ease than equal temperament could be, although it must be remembered that

usually even the most innocent set of cents values needs logarithmic

computation before yielding figures for a monochord. But it will be safe to

dismiss most of these oversubtle systems as useless, even for the age when

they were devised.

What do we have left? It will be of interest to consider which of his

twenty systems Neidhardt considered the best. In the Sectio canonis he had

said, “In my opinion, the first [of the circulating temperaments] is, for the

most part, suitable for a village, the second for a town, the third for a city,

and the fourth for the court.” The fourth was equal temperament; the mean

deviations of the other temperaments had been 4.0, 3.3, and 2.7 cents,

respectively.

In the much later Mathematische Abtheilungen Neidhardt presented

eighteen different irregular temperaments, together with just intonation and

equal temperament. He then attempted to choose the best of these twenty

tunings. He chose equal temperament, of course, and the two temperaments

(Third-Circle, No. 2, and Fifth-Circle, No. 8) that were identical with the

first and second circulating temperaments above. Now half of the rejected

temperaments had deviations lower than that of the second circulating



temperament (3.3), and a couple of others were just about as good. But none

of these was considered worthy in the final appraisal. Neidhardt had,

incidentally, changed his ideas somewhat as to the relative position of the

best temperaments: the Circulating Temperament, No. 2 (Fifth-Circle, No. 8)

is now considered best for a large city; No. 1 (Third-Circle, No» 2) for a

small city; and Third-Circle, No. 1, not included before, for a village.

If we examine the deviations of the major thirds in the three

temperaments Neidhardt himself considered superior, we quickly find why

he liked them. In the second circulating temperament (Table 155) the thirds

on Cand Fare 8 cents sharper than a pure third, and the sharpness gradually

increases in both directions around the circle of fifths until the three worst

thirds are 18 cents sharp. In the first circulating temperament (Table 151) the

third on C is only 6 cents sharp, and there is the same gradual increase until

the five poorest thirds are all 18 cents sharp. In the Third-Circle, No. 1

(Table 174), the third on C is 4 cents sharp, and the six poorest thirds are

either 18 or 20 cents sharp.

Werckmeister’s third temperament, the first of the three he has labeled

“correct” (Table 140), is much like the Neidhardt temperament just

mentioned. Its thirds on C and F are only 4 cents sharp, but the thirds of the

principal triads in the key of D
b
 are all a syntonic comma, 22 cents, sharp.

Werckmeister himself said that some people who advocated equal

temperament held that “in the future... it will be just the same to play an air

in D
b
 as in C.”

44
 gut he held consistently “that one should let the diatonic

thirds be somewhat purer than the others that are seldom used.”
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A good comparison can be made between two temperaments of

Neidhardt, already mentioned as having fifths of four different sizes and the

same number of each size, but with a different arrangement. The Fifth-

Circle, No. 12 (Table 176) has a symmetric arrangement and a low mean

deviation, 2.0. Its thirds show no trend whatever from near to far keys, but

are sufficiently irregular to make this seem a poor attempt at equal

temperament. Not so its companion, the third sample temperament (Table

173), in which the third on C is only 2 cents sharp, whereas four of the five

poorest thirds are 20 cents sharp. To be sure, the deviation for this

temperament, 5.7, is almost three times as great as for the other one, and

there is a painful lack of symmetry. But the unsymmetric temperament is

“circulating,” and therefore deserves an honored place among the “good”

temperaments.



Thomas Young’s temperaments also deserve mention for their circulating

nature. His first temperament (Table 152) is equivalent to a temperament

with four pure fifths and four fifths each tempered by 1/6 or 1/12 comma. It

is constructed with scientific accuracy so that the thirds range in sharpness

from 6 cents for C-E to 22 cents, a syntonic comma, for F
#
-A

#
. Its mean

deviation is 5.3. On the other hand, there is the symmetric form of this

temperament, Marpurg’s D (Table 154), with a mean deviation of 1.3. And

the even better, nonsymmetric form, with a mean deviation of 0.3! But these

last-mentioned temperaments are curiosities only, whereas Young’s

differentiated admirably between near and far keys.

However, Young’s first temperament was too difficult to construct, as he

had described it with fifths tempered by 3/16 and “approximately” 1/12

syntonic comma. Therefore he substituted his second method (Table 145),

which was of the utmost simplicity, with six consecutive perfect fifths and

six consecutive fifths tempered by 1/6 ditonic comma. Its mean deviation

was 6.0. In it the thirds on C, G, and Dare each 6 cents sharp, whereas those

on F
#
C

#
, and G

#
 are each 22 cents sharp. Neidhardt’s Fifth- Circle, No. 3

(Marpurg’s F) is the symmetric version of this temperament (Table 147),

with a mean deviation of 2.0. Again we may well say that Young’s version is

an excellent irregular temperament, while the symmetrical version represents

having fun with figures.

So many versions of good circulating temperaments have appeared on

these pages, each with its points of excellence, that we cannot resist the

temptation to close this chapter with an irregular temperament to end

irregular temperaments! Gallimard’s modification of the ordinary meantone

temperament, by a systematic variation in the size of the chromatic fifths,

was good enough in principle, but could not have been too successful

because of the large number of other fifths tempered by 1/4 comma.

What is really needed, in order to have a more orderly change in the size

of the thirds, is to have the variable tempering applied to all the fifths,

instead of to only five of them. Let the fifth D-A be the flattest, and let each

succeeding fifth in both directions around the circle of fifths be a little

sharper until the fifth on A
b
 is the sharpest. Then the total parts to be added

will bel + 2 + 3 + 4 + 5 + 6 + 5 + 4 + 3 + 2+ l = 36 parts. Since these parts

are to be added to 12 fifths, it is evident that D-A, the flattest fifth, will be

flatter than the fifth of equal temperament by three of these parts; the fifths

B-F
#
 and F-C will be precisely the size of the equal fifth; and the sharpest



fifth, A-E®, will be larger than the equal fifth by three parts. The thirds will

vary as follows (the error being expressed as the number of parts below or

above the third of equal temperament): C-E, -8; G-B, -8; D-F
#
, -6; A-C

#
, -2:

E-G
#
, 2; B-D

#
, 6; G

b
-B

b
, 8; D

b
-F, 8; A

b
-C, 6; E

b
-G, 2; B

b
-D, -2; F-A, -6.

We can choose the value for one part that will give the desired size of

thirds. If the part is one cent, the fifth D-A is 697 cents, practically a

meantone fifth, and the fifth A
b
-E

b
 is 703, practically perfect; the best thirds,

C-E and G-B, are 392, 1/4 comma sharp; the poorest thirds, G
b
-B

b
 and D

b
-F,

are 408, precisely a Pythagorean third.

Table 178 should have satisfied the desire of Werckmeister and his

contemporaries for a circulating temperament in which all the thirds are

sharp, but none more than a comma, and all the fifths are flat or pure. As the

size of the part is reduced, the tuning approaches equal temperament. When

the part is increased to 1 3/4 cents, the best thirds are pure. But the poorest

thirds are now 414 cents, about 5/4 comma sharp. Thus Table 178 probably

represents the limit of a tolerable temperament in the extreme keys. Since

the mean deviation for the entire series of temperaments formed in this

manner is precisely proportional to the size of the part, it would be easy to

devise a system with the deviation of any of the systems in this chapter, but

with a more orderly distribution of the errors, as regards common keys and

less-used keys.

The Temperament by Regularly Varied Fifths may be regarded as the

ideal form of Werckmeister’s “correct” temperaments and of Neidhardt’s

“circulating” temperaments and of all “good” temperaments that practical

tuners have devised by rule of thumb. Let us see, therefore, how closely it is

approached by these other temperaments. In Table 179, the deviations have

been computed, not only from equal temperament, but also from our

temperament with variable fifths. The table shows clearly that the

temperaments with greatest symmetry do not fit so well into the desired

pattern as do those that are much less regular in their construction. In

general, the temperaments with lowest deviation from the one ideal

temperament will have a high deviation from the other. Neidhardt’s second

circulating temperament has the unique position of ranking the same with

regard to both.



Table 177. Metius’ Irregular Temperament

Table 178. Temperament by Regularly Varied Fifths

Table 179. Deviations of Certain Temperaments

Our hypothetical reconstruction of Arnold Schlick’s temperament had

the same size of fifths asNeidhardt’s Third-Circle, No. 3, but differently

arranged, and with a fairly high deviation. Observe that, with this other

standard of varied dissonance, Schlick’s temperament is even a little better



than Neidhardt’s. Of all the temperaments shown in our table, Neidhardt’s

Third-Circle, No. 1 seems to be the best, with our new standard, although

Neid- hardt himseli said it was best for a village! But it would have been

difficult to tune, and therefore Thomas Young’s Temperament, No. 2

probably cannot be surpassed from the practical point of view. Even so, the

highest honor must be paid to old Arnold Schlick, writing so long before

these other men, but stating as clearly as need be for his very practical

purpose, “Although they will all be too high, it is necessary to make the

three thirds C-E, F-A, and G-B better,... as much as the said thirds are better,

so much will G be worse to E and B.”

Table 180. Compass of the Lute (See Chapter VII.)

1
 Fora condensed version of the material in this chapter, see J. Murray Barbour, “Irregular Systems of

Temperament,” Journal of the American Musicological Society, I (1948), 20–26.

2
 J. P. Rameau, Nouveau système de musique théorique (Paris, 1726), pp. 107 ff.

3
 “On Music,” Philosophical Magazine, XXVI (1806), 171–176.

4
 L’arithmétique des musiciens, p. 26.

5
 Spiegel der Orgelmacher und Organisten, in Monatshefte für Musikgeschichte, 1869, pp. 41 f.

6
 Shohé Tanaka, in Vierteljahrsschrift für Musikwissenschaft, VI (1890), 62.

7
 “Arithmetica applicirt oder gezogen auff die edel Kunst musica,” an appendix to his Ayn new

kunstlich Buech (Nürnberg, 1518).

8
 Elementa musicalia (Paris, 1496).

9
 Sylvestro Ganassi, Regola Rubertina. Lettione seconda (1543); ed. Max Schneider (Leipzig, 1924),

Chap. IV.



l0
 Monochordum (Leipzig, 1604).

11
 Musica mathematical the 2nd part of Heinrich Zeising’s Theatri machinarum (Altenburg, 1614),

pp. 151 f, 165ff.

12
 Part 3, Chap. 6.

13
 A Treatise of Musick (Edinburgh, 1721), p. 304.

14
 Abrégé des réglés de l’harmonie (Bordeaux, 1743), p. 87.

15
 Seconda parte dell’ Artusi overo della imperfettioni della moderna musica (Venice, 1603), pp. 30

ff.

16
 Alexander Ellis, “On the History of Musical Pitch,” Journal of the Society of Arts, XXVIII (1880),

295.

17
 Il desiderio, ovvero de’ concerti di varii stromenti musicali (Venice, 1594); new ed. by Kathi

Meyer (Berlin, 1924).

18
 Musica instrumentalis deudsch (4th ed.; Wittenberg, 1545), Reprinted as Band 20 of Publikation

älterer praktischer und theoretischer Musikwerke, 1896. The reference here is to page 227 of the

latter.

19
 Maurice Courant, In Encyclopedie de la musique et dictionnaire du conservatoire, Part 1, Vol. I, p.

90.

20
 Robert Dowland, Variety of Lute-Lessons (London, 1610). “Of Fretting the Lute” comes under

“Other Necessary Observations to Lute-playing by John Dowland, Bachelor of Music.”

21
 “Fabio Colonna, La sambuca lincea, p. 22.

22
 Henri Louis Choquel used a 12:11 semitone between A and B

b
 and a 33:32 semitone between B

b

and B, in what was otherwise a monochord in ordinary just intonation. La musique rendue sensible

par la méchanique (New ed., Paris, 1762).

23
 A. M. Awraamoff in 1920 devised a tuning for the chromatic octave that outdoes Colonna’s. The

natural seventh, 8:7, is exploited in this tuning, and such superparticular near-commatic Intervals

occur in it as 49:48 (36 cents) and 64:63 (27 cents)! “Jenseits von Temperierung und Tonalität,”

Melos, Vol. I (1920).

24
 See Johann George Neidhardt, Gäntzlich erschöpfte, mathematische Abtheilungen des diatonisch-

chromatischen, temperirten Canonis Monochordi (Königsberg and Leipzig, 1732), pp. 29 (the Fifth-

Circles) and 38 (Third- Circles). See also F.W. Marpurg, Versuch über die musikalische Temperatur,

p. 158, for the lettered temperaments A through L. All other references will be indicated in

footnotes.

25
 Georg Friedrich Tempelhof, Gedanken über die Temperatur des Herrn Kirnberger (Berlin and

Leipzig, 1775), pp. 10, 18.

26
 J.P. Kirnberger, Die Kunst des reinen Satzes in der Musik, Part I, p. 13.

27
 Christian Ludwig Gustav, Baron von Wiese, Klangeintheilungs-, Stimmungs und Temperatur-

Lehre (Dresden, 1793), p. 9 (No. 1) and p. 12 (No. 3).

28
 “principles of the Science of Tuning Instruments with Fixed Tones,” Philosophical Magazine,

XXV (1806), 291–312.



29
 Andreas Werckmeister, Musicalische Temperatur (Frankfort and Leipzig, 1691), Plate.

30
 J.P. Bendeler, Organopoeia (2nd ed.; Frankfurt and Leipzig, 1739), p. 40 (No. 1) and p. 42 (No. 2).

31
 Werckmeister (see Table 140), loc. cit.

32
 Akustik (Breslau, 1925), p. 31.

33
 Organopoeia, p. 42.

34
 “Outlines of Experiments and Inquiries Respecting Sound and Light,” Philosophical Transactions,

XC (1800), 145.

35
 J. Murray Barbour, “Bach and The Art of Temperament,” Musical Quarterly, XXXHI (1947), 66 f,

89.

36
 J. Bermudo, Declaracion de instrumentos musicales (Ossuna, 1555), Book 4, Chap. 86.

37
 A. Werckmeister, Musicalische Temperatur, Plate.

38
 J.G. Neidhardt, Sectio canonis harmonici, pp. 16–18.

39
 Thomas Young, in Philosophical Transactions, XC (1800), 145 f.

40
 Antoine Suremain-Missery, Théorie acoustico-musicale (Paris, 1793), p. 256.

41
 Marpurg, Versuch über die musikalische Temperatur, p. 163.

42
 J.G. Neidhardt, Gäntzlich erschöpfte mathematische Abtheilung, p. 34.

43
 D.R, van Nierop, Wis-konstige Musyka (Amsterdam, 1650). The reference here is to page 60 of

the 2nd edition (1659).

44
 A. Werckmeister, Hypomnemata musica (Quedlinburg, 1697), p. 36.

45
 Werckmeister, Musicalische Paradoxal-Discourse (Quedlinburg, 1707), p. 113.

OceanofPDF.com

https://oceanofpdf.com/


Chapter VIII. FROM THEORY TO PRACTICE

In our intensive study of scores of tuning systems we have failed to note

what may be learned from the music itself. Some of the theorists who have

written on tuning were able composers as well. When they described with

precision a particular division of the monochord, their theory may well have

coincided with fact. But the tuning theories of the mere mathematicians do

not carry so much weight. Nor do the rules of thumb the musicians more

commonly presented. All of these theories may be put into neat little

pigeonholes, but one can be sure that the practice itself, because of the

limitations of the human ear, was even more varied than the extremely

varied theories.

It is not to be expected that a study of the music will provide a precise

picture of tuning practice. It is to be used more by way of corroborating

what the theorists have said. Let us consider first the contention of

Vicentinothat the fretted instruments were always in equal temperament. In

general we can reach certain conclusions concerning tuning by examining

the range of modulation. However, this is not definitive as regards the lutes

and viols. Körte listed D
#
’s inlute music from 1508, an A

#
 from 1523, and

many D
b
’s from 1529.

1
 But the mere presence of notes beyond the usual 12-

note compass proves little, because the lutes were not restricted to a total

compass of 12 semitones. As shown in Table 180, the normal compass with

the G tuning was C
b
 to G

#
 and for the A tuning from D

b
 to D

#
.

Ordinarily, lutes and viols had six strings, tuned by fourths, with a major

third in the middle. Thus the open strings might be G C F A D G or A D G

B E A. It is easy to see here the prototype of Schöberg’s chords built by

fourths. Because of the perfect fourths, the fretted instruments might have

inclined toward the Pythagorean tuning, as the later violins have done.

Mersenne pointed out that the major third in the middle would then be sharp

by a comma.

But the strings of lutes and viols were tuned by forming unisons, fifths,

or octaves with the proper frets on other strings, thus making the tuning



uniform throughout the instrument. Vincenzo Galilei
2
 stated that if the

tuning were not equal, semitones on the A string (mezzana) of the lute

based on G would have the note names shown in Table 180. Since the frets

were merely pieces of gut tied straight across the fingerboards at the correct

places, the order of diatonic and chromatic semitones would have to be the

same on all strings. Thus the chromatic compass of a lute with six strings

and eight frets would be as shown in Table 180, if meantone temperament

had been used.

There might be some question for the G tuning regarding notes

produced by the 6th fret, since B would be a better choice than C
b
 on the

4th string. But the remaining notes for the 6th fret agree somewhat better

with other notes in the compass than the equivalent sharped notes would

have done. Galilei pointed out that G
b
 (4th string, 1st fret) was not a pure

fifth to C
#
 (3rd string, 4th fret), nor was D

b
 (5th string, 1st fret) a pure

octave to the C
#
. He might have added that D

b
 (1st string, 6th fret) was not

a pure octave above the C
#
 either.

It is easy to multiply examples of unsatisfactory intervals on the

unequally tuned lute in G. (Read them a tone higher for the A tuning.) Try

building major triads upon the notes of the 6th string, starting with B
b
. C,

D
b
, and E

b
 are satisfactory as roots also, but false triads are generated on B

and D. On the 5th string, starting with D, the satisfactory triads are on E
b
, F,

and A
b
; false triads on D, E, G

b
, and G. On the 4th string, starting with G,

the only unsatisfactory triad is on C
b
. On the 3rd string, starting with C, the

other satisfactory triads are on D, E
b
, and F, with false triads on C

#
 and E.

Thus, of 26 major triads in close position, only 17, about 2/3, are available.

Some of the triads, those on G, D, and A, unsatisfactory in the lower octave,

can be played correctly in the higher octave. But the complete E and B

major triads are unavailable anywhere, because there are no G
#
 and D

#
 –

unless, of course, the 6th fret runs to sharps rather than to flats.

As illustrations of incongruous notes on particular frets, let us examine

some of the Austrian lute music of the sixteenth century, as found in

Volume 18 of the Austrian Denkmäler. The first collection represented is

Hans Judenkünig’s Ain schone künstliche Underweisung (1523), His third

Priamell is modal, but often suggests C minor. Like most of the German and

Austrian composers, Judenkiinig used the A tuning of the lute. In bar 3 the



note a
b
 appears as the 4th fret on the 2nd string, indicating that this fret has

a flat tuning (see Table 180). But in bar 4 there is a b and in bar 19 a c
#
”,

both of which belong to the sharp tuning for this fret.

For Judenkünig’s fourth Priamell the editor has put the signature of

three sharps, as an indication of the prevailing sharpness. This even extends

to the 6th fret, which would then include an e
#’

. Actually there is an e
#’

 in

the music, and no f’. Therefore it would have been possible to play this

piece with an unequal temperament, but not without changing the 6th fret

from its normal flat tuning.

Simon Gintzler’s fifth Recercar (1547) used the Italian G tuning. Here

the 6th fret has a flat tuning, as shown by a
b′

and a very frequent e
b′

. But in

bar 10 there is a b instead of the c
b′ 

belonging to the flat tuning. In

Gintzler’s setting of Senf1’s song “Vita in ligno moritur,” the 6th fret is

again flat, but in bar 15 both a
b′

 and b occur.

The a
b′

 and b also occur several times in Bakfark’s Fantasias (1565).

More interesting is his setting of “Veni in hortum meum, soror mea” (1573).

In bar 50, d
″
 occurs as the third of the B major triad, indicating a sharp

tuning for the 6th fret. This means that f’ is not available on this fret; but f’

does occur in bar 56 and elsewhere. In bar 62 the complete C minor triad

occurs: c’ e
b′

 g
′
 c

″
with the e

b′
 the 4th fret on the 3rd string. But this fret must

have had a sharp tuning, since the notes d
#′

, g 
#′

, and c
″
 occur on it with

great frequency.

It would be easy to multiply examples, from the music of Italian,

French, and Spanish composer. Those that have been given are sufficient to

show that in the golden age of lute music the composers were indifferent to

discords that would have arisen if an unequal temperament had been used.

The example from Judenkiinig occurs so early in the century (1523) that it

seems very probable that lutes and viols did employ equal temperament

from an early time, perhaps from the beginning of the sixteenth century.

We need not be too much concerned with what the equal temperament

for the fretted instruments was really like. It might have been the

Grammateus-Bermudo tuning – Pythagorean with mean semitones for the

chromatic notes. It might have been the Ganassi-Reinhard mean semitones

applied to just intonation, or Artusi’s more subtle system of mean semitones

in meantone temperament. Or the frets might have been placed according to



Galilei’s 18:17 ratio, or (correctly) according to Salinas’ ratio of the 12th

root of 2. In any case, it would have been a good, workable temperament.

Tuning of Keyboard Instruments

In the early sixteenth century Schlick and Grammateus described

systems for keyboard instruments that came close to equal temperament,

and the correct application of Lanfranco’s tuning rules must have resulted in

equal temperament itself. But these systems were anomalous for a day

when few accidentals were written. Examples of organ music from the late

fifteenth and the entire sixteenth century are found in numerous collections,

such as Schering’s Alte Meister aus der Frühzeit des Orgelspiels; Volume 1

of Bonnet’s Historical Organ Recitals; Kinkeldey’s Orgel und Clavier in der

Musik des 16. Jahrhunderts; Volume 1 of Margaret Glyn’s Early English

Organ Music; Volume 3 of Torchi’s L’arte musicale in Italia; Wasielewski’s

Geschichte der Instrumentalmusik im 16. Jahrhundert; Volume 6 of the

Italian Classics series.

With the exception of the English composers, the compass used by all

these composers was less than 12 notes – E
b
-F

#
 or B

b
-C

#
. Both Tallis

andRedford had D
#
 in one piece and E

b
 in another, thus posing a problem

with regard to the tuning. But except for them, there was no problem about

performance: all of this organ music could have been played on an

instrument in meantone temperament.

Even 12 of Schlick’s 14 little pieces (Monatshefte für Musikgeschichte,

1869) lie within a compass of E
b
-C

#
. One of the remaining pieces has an

A
b
; the other, G

#
. Since Schlick had directed that the wolf be divided

equally between the fifths C
#
-G

#
 and A

b
-E

b
, these notes would have caused

him no difficulty. Perhaps Tallis and Redford were dividing the error

similarly.

Much the same can be said for the clavier music of this period. Merian’s

Der Tanz in den deutschen Tabulaturbühern (Leipzig, 1927) contains about

200 tiny keyboard pieces, and Volume 2 of Böhme’s Geschichte des Tanzes

about 20 more. None exceeds the E
b
-G

#
 compass. The famous English

collection of virginal music, Partheni a, reveals nothing beyond the fact that

Byrd preferred E
b
, the younger composers Bull and Gibbons, D

#
. In

Margaret Glyn’s edition of Gibbons’ Complete Keyboard Works, five of the



33 virginal pieces have a D
#
, but only two contain Eb’s, one of these, a

Pavan in G minor, having also an A
b
. But that does not necessarily mean

that Gibbons did not use the meantone temperament. The virginals could

have been set for an A
b
 at one time and for a D

#
 at another – a point that

will be discussed at some length later, More significant are the A
b
 and D

#

that occur in a G minor Fancy for organ by Gibbons. Unless Gibbons’

tuning was appreciably better than the meantone temperament, this Fancy

would have had some very rough places. This same A
b
-D

#
 was used in

Tarquinio Merula’s Sonata Cromatica, a work having a modern ring

because of its chromaticism.
3

Just a word about chromaticism. Other things being equal, a piece that

contains many chromatic progressions is more likely to have an excessive

tonal compass than one that is not chromatic. But, since there are 12

different pitch names in the meantone compass, E
b
-G

#
, it is entirely possible

for a chromatic piece to lie within it. A Toccata by Michelangelo Rossi, for

example, published in 1657, is very chromatic, but carefully remains within

the meantone bounds.
4

The great English manuscript source of the early seventeenth century,

the Fitzwilliam Virginal Book, is a monument to the boldness of the clavier

composers of that time. Naylor
5
 has given a fascinating and exhaustive

account of the music in this collection, and has shown that many of the

progressions containing accidentals resemble modulations to our major and

minor keys more than they do modal cadences. Twenty-five of the 297

compositions contain D
#’

s, with Bull, Byrd, Farnaby, and Tomkins in the

lead. Bull, Farnaby, Tisdall, and Oystermayre have A
#
’s also.

With one exception, the largest compass in the entire collec tion is that

of Byrd’s “Ut, re, mi, fa, sol, la,” which extends from A
b
 to D

#
. That

exception, of course, is John Bull’s composition on the hexachord, with the

same title as Byrd’s. It overlaps the circle of fifths by six notes, with the

compass C
b
-A

#
. Bull states his Canto Fermo first on G and rises by tones

through A, B, D
b
, E

b
, and F. He then begins afresh with A

b
, B

b
, C, D, E, F,

and G. An enharmonic modulation occurs at the beginning of Section 4,

where the chord of F
#
 is quitted as G

b
. The editors of the Fitzwilliam

Virginal Book were so impressed with this passage that they correctly stated

in a footnote,” This interesting experiment in enharmonic modulation is



thus tentatively expressed in the MS.; the passage proves that some kind of

‘equal temperament’ must have been employed at this date.”
6

This remarkable composition is not a mere juggling with sounds, as

Naylor has alleged. It has real musical interest, and because of its sustained

style seems better adapted to the organ than to the clavier. But do not try to

build up a theory of the use of equal temperament in England during Queen

Elizabeth’s reign on the basis of Dr. Bull’s composition. Remember that it

stands practically alone. It seems almost as if Bull had written a Fancy for

four viols, and then, led by some mad whim, had transcribed it for virginals

and tuned his instrument to suit.

One of the boldest of the keyboard composers of the early seventeenth

century was Frescobaldi, an exact contemporary of Gibbons. Of his 31

works for organ and clavier,
7
 three contain D, three a D

#
, and one an A

#
.

One of the most interesting of these is the Partite sopra Passacagli for organ,

with a compass of D
b
-G. The G

#
 is the third of the dominant triad of A

minor, and the D
b
 the third of the subdominant triad of F minor. Hence the

ordinary meantone temperament would be inadequate for Frescobaldi.

In decided contrast to Frescobaldi are Sweelinck (German Denkmäler,

IV Band, 1. Folge) and Scheidt (German Denkmäler, I Band). Sweelinck’s

Fantasia Cromatica, with E
b
-D

#
 compass, was the only one of 36 pieces

examined to exceed 12 scale degrees, and Scheidt, although not averse to

chromaticism and rather fond of D
#
’s, had no single composition, of 44

examined, with more than 12 degrees.

As we reach the middle of the seventeenth century, we shall have to

differentiate more carefully between music for organ and for clavier. The

organ had a fixed compass, usually E
b
-G

#
, but perhaps B

b
-D

#
 or A

b
-C

#
.

Even if the composer did not employ A
b
 and D

#
, for example, in the same

composition, as Gibbons and Merula had done, the presence of these notes

in separate compositions was an indication that he was using at least a

modified version of the meantone temperament.
8

Not so for clavier. A study of the accidentals in clavier music suggests

that tuning practice must have accommodated itself to the music to be

played. The performer would retune when changing from sharp to flat keys.

Bach could tune his entire harpsichord in fifteen minutes; to change the

pitches of only a couple of notes in each octave would have taken a much

shorter time. Moreover, all the movements of the common dance suites



were in the same key, and this helped to restrict the compass to not more

than twelve different pitch names, even if that compass was not the

conventional E
b
-G

#
.

The theorists give us little information about the variable tuning of

claviers. Mersenne hinted at the practice. He had given two keyboards in

just intonation, the first with sharps only (except for B
b
) and the second

with flats. Current practice, he said, was represented by either of these, but

with tempered, not just, intervals. Some eighty-five years later Kuhnau

wrote to Mattheson that the strings of his Pantalonisches Cimbal (a large

keyed dulcimer) vibrated so long he could not use equal temperament upon

it, but had to “correct one key or another” when turning from flats to sharps.

More valuable evidence of the variable tuning practice for clavier

comes from the music itself. Of Froberger’s 67 clavier compositions

(AustrianDenkmäler, VI, 2. Theil, and X, 2. Theil), 6 use 14 scale degrees,

10 use 13, and the remaining 51 use 12 or fewer. But only half (26) of the

51 lie wholly within the usual meantone compass. His accidentals range

altogether from G
b
 to E

#
.

Similarly, Johann Pachelbel’s clavier music (Bavarian Denkmäler, 2.

Jahrgang, 1. Band) suggests a variable tuning. Of 49 compositions

examined, only 2 have more than 12 scale degrees. But of the remaining 47,

only 21, or less than half, lie within the E
b
-G compass, and the total range is

from D
b
 to B

#
 An exception among Pachelbel’s works, the Suite in A

b

(Suite ex Gis), beginning with anAllemand in A
b
 minor, contains an

enharmonic modulation at the point where the F
b
 major triad is treated as E

major by resolving upon A minor, just before a cadence in E
b
 major! With a

range from D
bb

 to B for this single movement, it seems evident that for the

moment Pachelbel was as reckless as Bach.

Kuhnau’s works (German Denkmäler, IV Band, 1. Folge) give musical

evidence of variability to buttress what he wrote to Mattheson. Of his 28

clavier works, 3 of the 6 Biblical Sonatas have a compass of 14 scale

degrees; the other 3 sonatas and 5 other works have 13. But of the

remaining 17 works that have no more than 12 different pitches in the

octave, only 2 lie wholly within the E-G
#
 tuning. Actually Kuhnau

preferred equal temperament upon the clavier. But most of these works

would have been passable in meantone temperament if he had “corrected”

some of the notes, just as he did on the Pantalon.



Of François Couperin’s 27 charming suites for clavecin, only 6 have no

more than 12 different scale degrees. They are all in the minor key, and in

each the flattest note is a semitone higher than the keynote, as No. 8 in B

minor has the compass C-E
#
. Twenty of the remaining 21 suites exceed the

circle of fifths by one or two notes. But here again it is characteristic to

have the flattest note a semitone above the tonic. For example, all five

suites in D major-minor have the precise compass E
b
-A

#
. Couperin leaves a

strong impression that the dissonance inevitable in the slightly extended

compass was a coolly calculated risk, and that a variable meantone tuning

was used for these suites also. The one exception is No. 25, in E
b
 major and

C major minor. The compass here is 15 scale degrees, from G
b
 to D

#
. This

would, perhaps, be carrying piquancy too far.

There is ample evidence that in Italy during the first half of the

eighteenth century equal temperament or its equivalent was being practiced.

Three composers represented in the Italian Classics had, in a particular

composition, a similar compass, 15 notes in the overlapping circle of fifths.

They are Zipoli, D
b
-D

#
, Vol. 36; Serini, C

b
-C

#
, Vol. 29; and Durante, G

b
-

G
#
, Vol. 11. Of 70 of Domenico Scarlatti’s delightful little “sonatas,”

9
 45, or

more than half, overlap the circle. In one sonata he had a compass of 18

degrees, D
b
-B

#
; in another, 17, G

b
-A

#
. All of these men upon occasion

wrote notes so remote from the tonal center that meantone temperament

seems wholly out of the question. Both Serini and Durante used Fx, and

Scarlatti, Cx.

At this time, in Germany, Telemann was advocating a form of multiple

division with 55 notes in the octave, for a clavier with only 12 notes in the

octave, which was practically the same as Silbermann’s 1/6-comma variety

of meantone temperament. We might expect, therefore, that his

compositions for clavier would not exceed the bounds of the meantone

temperament. However, Telemann’s 36 Clavier Fantasies have a total range

of G
b
- B

#
, the same as for Couperin’s suites. Only 8 of the fantasies overlap

the circle, by one or two degrees. Of the remaining 28, only one lies within

the ordinary meantone bounds, E
b
-G

#
. The others swing to the sharp side or

the flat side, depending upon the key. Thus Telemann undoubtedly used the

meantone temperament, but with variable intonation.

It has been suggested in the preceding pages that composers such as

Bull, Gibbons, Frescobaldi, and Domenico Scarlatti, whose works exceed



the meantone bounds by several scale degrees, were not using the meantone

temperament. Were they, then, using equal temperament? That question is

difficult to answer, especially since there was a type of tuning that would

have been fairly satisfactory in many of these cases. The title of Bach’s

great collection of preludes and fugues, Das wohltemperirte Clavier, has

usually been taken to mean, as Parry called it,” The Clavichord Tuned in

Equal Temperament.” But even in Bach’s day there was a good German

phrase for equal temperament – “die gleichschwebende Temperatur,” “the

equally beating temperament.” Bach’s title might better be paraphrased,

“The Well-Tuned Piano.”

Now, “well-tuned” had been used in a somewhat technical sense by the

Flemish mathematician Simon Stevin, over a century before the first

volume of the “48” was compiled in 1722, and by Bach’s great French

contemporary Rameau also, with a meaning nearly the same as Parry has

given to it. To German theorists, however, there was a distinction. Andreas

Werckmeister has erroneously been hailed as the father of equal

temperament because of the title of one of his works on tuning,

Musicalische Temperatur, and because of Mattheson’s eulogy. Mattheson

had said,” And thus the fame previously divided between Werckmeister and

Neidhardt remains ineradicable – that they brought temperament to the

point where all keys could be played without offense to the ear.”
10

(Underscoring is the present author’s.) Werckmeister himself has used the

phrase “wohl ternperirt” as follows: “But if we have a well-tuned clavier,

we can play both the major and minor modes on every note and transpose

them at will. To one who is familiar with the entire range of keys, this

affords variety upon the clavier and falls upon the ear very pleasantly.”

What did Werckmeister mean by these words? To use Neidhardt’s

phrase, he meant a “completely circulating genus,” that is, a tuning in which

one could circumnavigate the circle of fifths without mal de son
a
 Both men,

as we have seen in Chapter VII, presented a number of different

monochords, with the “foreign” thirds beating as much as a comma.

Werckmeister said of them, “It would be very easy to let the thirds D
b
-F,

G
b
-B, A

b
-C beat less than a full comma; but since thereby the other, more

frequently used thirds obtain too much, it is better that the latter should

remain purer, and the harshness be placed upon those that are used the

least.” Elsewhere. Werckmeister described equal temperament with fair

accuracy, but demurred, “I have hitherto not been able to approve this idea,



because I would rather have the diatonic keys purer.” And so to

Werckmeister “well-tuned” meant “playable in all keys – but better in the

keys more frequently used.”

If, then, a composer exceeded twelve different pitch names rarely and

then only by a few scale degrees, his works could have been played to good

advantage on a “well-tuned clavier.” Composers like Bull and Pachelbel

and Scarlatti, however, who effected enharmonic modulations and used

double sharps, would have been badly served even by Werckmeister’s best-

known “correct” temperament, in which the key of D
b
 had Pythagorean

thirds for all its major triads. Equal temperament was needed for their

works.

An equal temperament was needed for the keyboard works of Bach,

both for clavier and for organ. It is generally agreed that Bach tuned the

clavier equally. Actually he was opposed to equal temperament, in the sense

that there must be strict mathematical ratios, which are first applied to the

monochord and from there to the instrument to be tuned. Of course he was

right. The best way to tune in equal temperament, as Ellis stated, is to count

beats. Have you ever heard of a contemporary piano tuner who carried a

monochord with him? And yet the underlying theory must be correct or the

result will be unsatisfactory: Ellis could not have given his practical tuning

rule with assurance had he not been able to calculate accurately how far its

use would fall short of the perfection implied by the term” equal

temperament.”

The organ works of Bach show as great a range of modulation as his

clavier works do. Except for a dozen chorale preludes in the Orgelbüchlein,

there are only 3 organ works of 148 examined that do not overstep the

compass of the conventionally tuned organ. The compass of individual

organ pieces is very frequently 13, 14, and 15 scale degrees, and even 18,

19, and 21 degrees have been observed. The compass of Bach’s organ

works as a whole is E
bb

-Cx, 25 degrees! In these works is a host of

examples of triads in remote keys that would have been dreadfully

dissonant in any sort of tuning except equal temperament. For

corroboration, if corroboration be necessary, we need but note the advice

that Sorge gave to the instrument-maker Silbermann, two years before

Bach’s death. Sorge, a proponent of equal temperament, said: “In a word –

Silbermann’s way of tempering cannot exist with modern practice. I call

upon all impartial and experienced musicians – especially the world-famous



Herr Bach in Leipzig – to witness that this is all the absolute truth. It is tobe

desired, therefore, that the excellent man [Silbermann] ... should alter his

opinion regarding temperament . . . .” 
11

Just Intonation in Choral Music

We have seen that just intonation exists in many different forms, and

that the best version, if modulations are to be made to keys beyond B
b
 and

A, comes near the Pythagorean tuning, as with Ramis. The contention has

often been made that unaccompanied voices sing in just intonation.

Zarlino
12

 listed instruments in three groups, each with a different tuning:

keyboard instruments in meantone temperament; fretted instruments in

equal temperament; voices, violins, and trombones in just intonation. His

argument was that since intonation is free for these three last-named groups,

they would use an intonation in which thirds and sixths are pure. Three

hundred and forty-eight years later Lindsay Norden said, “As we shall

show, no singer can sing a cappella in any temperament.... A cappella

music, therefore, is always sung in just or untempered intonation.” 
13

Let us see what is implied by these statements. In the first place, singers

must be able to sing the thirds and sixths purely.
14

 This may sound like a

self-evident truth, too absurd to discuss. But scientific studies of intonation

preferences show that the human ear has no predilection for just intervals,

not even the pure major third.
15

 Alexander Ellis declared that it was

unreliable to tune the pure major thirds of meantone temperament directly,

preferring results obtained by beating fifths. Hence the singers must be

highly trained to be able to sing the primary triads of a key justly.

In the second place, the singers must be able to differentiate intervals

differing by the syntonic comma, 1/9 tone. We have seen that in Ptolemy’s

version of the syntonic tuning the D minor triad, the supertonic triad of the

key of C major, will be false. If, as Kornerup and others advocate, the

Didymus tuning is used instead of Ptolemy’s, the dominant triad will be

false, which is a greater loss. But a singer trained to niceties of intonation

would have to vary his pitch by a comma in such critical places, and thus

save the situation. Very good. But studies at the University of Iowa
16

 have

shown that there is no such thing as stability of pitch among singers:

scooping is found in almost half the attacks and averages a whole tone in



extent; portamento is very common; the sustained part of the pitch varies

from the true pitch by a comma or more in one-fourth of the notes analyzed.

If we add to these errors the omnipresent vibrato, with an average extent of

a semitone, it would seem that the ambitious and optimistic director of an

unaccompanied choir has an impossible task.

Let us assume, for the moment, that it is possible fora choir to sing

without these pitch fluctuations, that all its members can sing a note a

comma higher or lower when necessary, and that the director has analyzed

the music and marked the places where the comma shifts are to be made.

What have we then? Strangely enough, if the harmony consists of simple

diatonic progressions, typical of the seventeenth and eighteenth centuries,

the pitch will probably fall. With modal progressions, as in Palestrina, it is

more likely to remain stationary. According to Gustav Engel, if one were to

consider possible comma shifts whenever a modulation occurs, most of the

recitatives in Mozart’s Don Giovanni would fall from one to four commas if

sung unaccompanied, and the final pitch of the opera would be five or six

semitones flatter than at the beginning, A or A
b
 instead of D!

If the music contains much chromaticism and remote modulations, even

the best-trained choir would probably flounder. And yet there are choral

compositions of the sixteenth and early seventeenth centuries that seem

strikingly modern because of these very features. De Rore’s madrigal

“Calami sonum ferentes” for four basses (c. 1555) begins with an ascending

chromatic scale passage treated in imitation. Later it has a remarkable

faburden of inverted major triads a semitone apart – G F
#
 G A

b
 G. Caimo’s

madrigal “E ben raggion” (1585) contains a very smooth example of

modulation in which the F
#
 major triad is heard, and, 24 bars later, its

enharmonic equivalent, the G
b
 major triad. In just intonation the latter triad

would be a large diesis (41 cents, or almost a quarter tone) higher than the

former.

And what of Marenzio’s madrigal “O voi che sospirate a miglior note,”

where there is a modulation around the circle of fifths from C to G
b
, an

enharmonic change from G
b
 to F

#
, and further modulation on the sharp

side? According to Kroyer, from whom all these examples have been taken,

this is the first time in music that the circle of fifths has been completed.
17

Could Marenzio’s madrigal have been sung in just intonation?



Gesualdo has the respect of the moderns because of his harmonic

freedom. The best known of his chromatic madrigals is the “Resta di darmi

noia,” in which he passes from G minor to E major, and then sequentially

from A minor to F
#
 major. Listen to the recording of this madrigal by a

group of unaccompanied singers in the album 2000 Years of Music and you

will probably agree that the attempt to record it was a noble experiment and

nothing more.

Of course the point that is missed by all these rabid exponents of just

intonation in choral music is that this music was not ordinarily sung

unaccompanied in the sixteenth century. A cappella meant simply the

absence of independent accompaniment, not of all accompaniment. If a

choir usually sang motets accompanied by an organ in meantone

temperament, it would quickly adapt itself to the intonation of the organ. If

this choir were in the habit of singing madrigals accompanied by lutes or

viols in equal temperament, its thirds would be as sharp as the thirds are

today. Kroyer thought the pronounced chromaticism of the Italian

madrigalists showed the influence of keyboard instruments. On the

contrary: it must have been the fretted instruments, already in equal

temperament, that influenced composers like de Rore, Caimo, Marenzio,

and Gesualdo to write passages in madrigals that could not have been sung

in tune without accompaniment.

Present Practice

What is tuning like today? A generation ago, Anglas made some

excellent observations about the intonation of the symphony orchestra.
18

The pedals of the harp are constructed to produce the semitones of equal

temperament; therefore, once the harp is put in tune with itself, it, and it

alone of all the instruments, will be in equal temperament. The violins show

a tendency toward the Pythagorean tuning, both because of the way they are

strung and because of the players’ tendency to play sharps higher than

enharmonic flats. Furthermore, in a high register both the violins and the

flutes are likely to play somewhat sharp for the sake of brilliance. He might

have added that the brass instruments, making use of a more extended

portion of the harmonic series than the woodwinds, have a natural

inclination toward just intonation in certain keys. The result is “a very great

lack of precision,” with heterogeneous sounds that are a mixture of “just,



Pythagorean, tempered, or simply false.” Of course the ears of the audience,

trained for years to endure such cacophony, actually are pleased by what

seems to be a good performance.

Ll. S. Lloyd has written an article with the frightening title “The Myth

of Equal Temperament.”
19

 It would be pretty discouraging for the present

author to have done extended research upon the history of equal

temperament only to learn at last that his subject matter was in the class

with the story of Cupid and Psyche! But Lloyd has not actually consigned

equal temperament to the category of the tale of George Washington and the

cherry tree. His argument is against rigidity of intonation, the rigidity that is

inherent in any fixed system of tuning. He holds that the players in a string

quartet or the singers in a madrigal group are likely to be guided by the

music itself as to what intonation to use, sometimes approaching

Pythagorean intervals when melodic considerations are paramount or just

intervals when the harmony demands it. And undoubtedly this freedom of

intonation, plus a well-defined vibrato, does increase the charm of these

more intimate chamber ensembles.

Not even the piano is exempt from the charge of inexactness. Three-

quarters of a century ago Alexander Ellis showed that the best British tuners

of his day failed to tune pianos in equal temperament within desirable limits

of error. There is no reason to believe that modern British tuners, or

American ones either, are doing a better job than was done then. Schuck

and Young even show that, because of the inharmonicity of the upper

partials of the piano, a tuner is bound to tune the upper octaves

progressively sharper and the lowest octaves progressively flatter than those

in the middle range.
20

 Their theoretical findings agree with measurements

Railsback had already made of pianos tuned in equal temperament.

However, the psychologists tell us that “stretched” octaves at top and

bottom are a concomitant of normal hearing. Therefore the sharpness and

the flatness respectively would probably be heard as correct intonation.

Now all of this paints a dismal picture. Apparently nobody – not the

pianist, nor the singer, nor the violinist, nor the windplayer – is able to

perform in correct equal temperament. The harpist is left sitting alone, but

no doubt he will be joined by the Hammond organist, whose instrument

comes closest to the equal tuning.

This contemporary dispute about tuning is perhaps a tempest in a teapot.

It is probably true that all the singers and players are singing and playing



false most of the time. But their errors are errors from equal temperament.

No well-informed person today would suggest that these errors consistently

resemble departures from just intonation or from any other tuning system

described in these pages. Equal temperament does remain the standard,

however imperfect the actual accomplishment may be.

The trend of musical composition during the late nineteenth and the first

half of the twentieth century has been to exploit the resources of equal

temperament, of an octave divided into 12 equal parts, and hence also into

2, 3, 4, or 6 parts. To ascertain how far back this trend extends is not the

purpose of this book. It would be foolish to deny that this modern trend is

different in kind from the progressions of classic harmony, progressions that

were almost as common in 1600 as in 1800. But it may be denied that these

classic progressions were intimately connected with the meantone

temperament, as has often been alleged; for we have seen that the original

1/4-comma meantone system did not even reign supreme in 1600, much

less in 1700 or 1750. In 1600 there were half a dozen or more ways to tune

the octave; in 1732 Neidhardt gave his readers a choice of twenty!

Moreover, there is every reason to believe that in practice there were far

greater departures from these extremely varied tuning methods of the

seventeenth and eighteenth centuries than there are from equal temperament

today.

In the very nature of things, equal temperament has undergone

vicissitudes during the last four hundred years, and will continue to do so.

Perhaps the philosophical Neidhardt should be allowed to have the last

word on the subject: “Thus equal temperament carries with itself its comfort

and discomfort, like the holy estate of matrimony.”
21
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